home *** CD-ROM | disk | FTP | other *** search
- /* Expands front end tree to back end RTL for GNU C-Compiler
- Copyright (C) 1987, 1988, 1989 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* This file handles the generation of rtl code from tree structure
- above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
- It also creates the rtl expressions for parameters and auto variables
- and has full responsibility for allocating stack slots.
-
- The functions whose names start with `expand_' are called by the
- parser to generate RTL instructions for various kinds of constructs.
-
- Some control and binding constructs require calling several such
- functions at different times. For example, a simple if-then
- is expanded by calling `expand_start_cond' (with the condition-expression
- as argument) before parsing the then-clause and calling `expand_end_cond'
- after parsing the then-clause.
-
- `expand_function_start' is called at the beginning of a function,
- before the function body is parsed, and `expand_function_end' is
- called after parsing the body.
-
- Call `assign_stack_local' to allocate a stack slot for a local variable.
- This is usually done during the RTL generation for the function body,
- but it can also be done in the reload pass when a pseudo-register does
- not get a hard register.
-
- Call `put_var_into_stack' when you learn, belatedly, that a variable
- previously given a pseudo-register must in fact go in the stack.
- This function changes the DECL_RTL to be a stack slot instead of a reg
- then scans all the RTL instructions so far generated to correct them. */
-
- #include "config.h"
-
- #include <stdio.h>
-
- #include "rtl.h"
- #include "tree.h"
- #include "flags.h"
- #include "insn-flags.h"
- #include "insn-config.h"
- #include "insn-codes.h"
- #include "expr.h"
- #include "regs.h"
- #include "hard-reg-set.h"
- #include "recog.h"
- #include "obstack.h"
-
- #define obstack_chunk_alloc xmalloc
- #define obstack_chunk_free free
- struct obstack stmt_obstack;
-
- extern int xmalloc ();
- extern void free ();
-
- #define MAX(x,y) (((x) > (y)) ? (x) : (y))
- #define MIN(x,y) (((x) < (y)) ? (x) : (y))
-
- /* Nonzero if function being compiled pops its args on return.
- May affect compilation of return insn or of function epilogue. */
-
- int current_function_pops_args;
-
- /* Nonzero if function being compiled needs to be given an address
- where the value should be stored. */
-
- int current_function_returns_struct;
-
- /* Nonzero if function being compiled needs to
- return the address of where it has put a structure value. */
-
- int current_function_returns_pcc_struct;
-
- /* Nonzero if function being compiled needs to be passed a static chain. */
-
- int current_function_needs_context;
-
- /* Nonzero if function being compiled can call setjmp. */
-
- int current_function_calls_setjmp;
-
- /* Nonzero if function being compiled can call alloca,
- either as a subroutine or builtin. */
-
- int current_function_calls_alloca;
-
- /* Nonzero if the current function returns a pointer type */
-
- int current_function_returns_pointer;
-
- /* If function's args have a fixed size, this is that size, in bytes.
- Otherwise, it is -1.
- May affect compilation of return insn or of function epilogue. */
-
- int current_function_args_size;
-
- /* # bytes the prologue should push and pretend that the caller pushed them.
- The prologue must do this, but only if parms can be passed in registers. */
-
- int current_function_pretend_args_size;
-
- /* Name of function now being compiled. */
-
- char *current_function_name;
-
- /* Label that will go on parm cleanup code, if any.
- Jumping to this label runs cleanup code for parameters, if
- such code must be run. Following this code is the logical return label. */
-
- rtx cleanup_label;
-
- /* Label that will go on function epilogue.
- Jumping to this label serves as a "return" instruction
- on machines which require execution of the epilogue on all returns. */
-
- rtx return_label;
-
- /* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
- So we can mark them all live at the end of the function, if nonopt. */
- rtx save_expr_regs;
-
- /* List (chain of EXPR_LISTs) of all stack slots in this function.
- Made for the sake of unshare_all_rtl. */
- rtx stack_slot_list;
-
- /* Filename and line number of last line-number note,
- whether we actually emitted it or not. */
- char *emit_filename;
- int emit_lineno;
-
- /* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */
- static rtx parm_birth_insn;
-
- /* The FUNCTION_DECL node for the function being compiled. */
-
- static tree this_function;
-
- /* Offset to end of allocated area of stack frame.
- If stack grows down, this is the address of the last stack slot allocated.
- If stack grows up, this is the address for the next slot. */
- static int frame_offset;
-
- /* Nonzero if a stack slot has been generated whose address is not
- actually valid. It means that the generated rtl must all be scanned
- to detect and correct the invalid addresses where they occur. */
- static int invalid_stack_slot;
-
- /* Label to jump back to for tail recursion, or 0 if we have
- not yet needed one for this function. */
- static rtx tail_recursion_label;
-
- /* Place after which to insert the tail_recursion_label if we need one. */
- static rtx tail_recursion_reentry;
-
- /* Each time we expand an expression-statement,
- record the expr's type and its RTL value here. */
-
- static tree last_expr_type;
- static rtx last_expr_value;
-
- /* Chain of all RTL_EXPRs that have insns in them. */
- static tree rtl_expr_chain;
-
- /* Last insn of those whose job was to put parms into their nominal homes. */
- static rtx last_parm_insn;
-
- /* Cleanup lists are required for binding levels regardless of whether
- that binding level has cleanups or not. This node satisfies that
- need for all binding levels. */
- static tree empty_cleanup_list;
-
- /* Functions and data structures for expanding case statements. */
-
- /* Case label structure, used to hold info on labels within case
- statements. We handle "range" labels; for a single-value label
- as in C, the high and low limits are the same. */
-
- struct case_node
- {
- struct case_node *left;
- struct case_node *right;
- struct case_node *parent;
- tree low;
- tree high;
- tree test_label;
- tree code_label;
- };
-
- typedef struct case_node case_node;
- typedef struct case_node *case_node_ptr;
-
- extern void balance_case_nodes ();
- extern void emit_case_nodes ();
- extern void group_case_nodes ();
- extern void emit_jump_if_reachable ();
-
- /* Stack of control and binding constructs we are currently inside.
-
- These constructs begin when you call `expand_start_WHATEVER'
- and end when you call `expand_end_WHATEVER'. This stack records
- info about how the construct began that tells the end-function
- what to do. It also may provide information about the construct
- to alter the behavior of other constructs within the body.
- For example, they may affect the behavior of C `break' and `continue'.
-
- Each construct gets one `struct nesting' object.
- All of these objects are chained through the `all' field.
- `nesting_stack' points to the first object (innermost construct).
- The position of an entry on `nesting_stack' is in its `depth' field.
-
- Each type of construct has its own individual stack.
- For example, loops have `loop_stack'. Each object points to the
- next object of the same type through the `next' field.
-
- Some constructs are visible to `break' exit-statements and others
- are not. Which constructs are visible depends on the language.
- Therefore, the data structure allows each construct to be visible
- or not, according to the args given when the construct is started.
- The construct is visible if the `exit_label' field is non-null.
- In that case, the value should be a CODE_LABEL rtx. */
-
- struct nesting
- {
- struct nesting *all;
- struct nesting *next;
- int depth;
- rtx exit_label;
- union
- {
- /* For conds (if-then and if-then-else statements). */
- struct
- {
- /* Label on the else-part, if any, else 0. */
- rtx else_label;
- /* Label at the end of the whole construct. */
- rtx after_label;
- } cond;
- /* For loops. */
- struct
- {
- /* Label at the top of the loop; place to loop back to. */
- rtx start_label;
- /* Label at the end of the whole construct. */
- rtx end_label;
- /* Label for `continue' statement to jump to;
- this is in front of the stepper of the loop. */
- rtx continue_label;
- } loop;
- /* For variable binding contours. */
- struct
- {
- /* Nonzero => value to restore stack to on exit. */
- rtx stack_level;
- /* The NOTE that starts this contour.
- Used by expand_goto to check whether the destination
- is within each contour or not. */
- rtx first_insn;
- /* Innermost containing binding contour that has a stack level. */
- struct nesting *innermost_stack_block;
- /* List of cleanups to be run on exit from this contour.
- This is a list of expressions to be evaluated.
- The TREE_PURPOSE of each link is the ..._DECL node
- which the cleanup pertains to. */
- tree cleanups;
- /* List of cleanup-lists of blocks containing this block,
- as they were at the locus where this block appears.
- There is an element for each containing block,
- ordered innermost containing block first, once there are
- any cleanups at all.
- The element's TREE_VALUE is the cleanup-list of that block,
- which may be null. */
- tree outer_cleanups;
- /* Chain of labels defined inside this binding contour.
- For contours that have stack levels or cleanups. */
- struct label_chain *label_chain;
- } block;
- /* For switch (C) or case (Pascal) statements,
- and also for dummies (see `expand_start_case_dummy'). */
- struct
- {
- /* The insn after which the case dispatch should finally
- be emitted. Zero for a dummy. */
- rtx start;
- /* A list of case labels, kept in ascending order by value
- as the list is built.
- During expand_end_case, this list may be rearranged into a
- nearly balanced binary tree. */
- struct case_node *case_list;
- /* Label to jump to if no case matches. */
- tree default_label;
- /* The expression to be dispatched on. */
- tree index_expr;
- /* Type that INDEX_EXPR should be converted to. */
- tree nominal_type;
- /* Number of range exprs in case statement. */
- short num_ranges;
- } case_stmt;
- /* For exception contours. */
- struct
- {
- /* List of exceptions raised. This is a TREE_LIST
- of whatever you want. */
- tree raised;
- /* List of exceptions caught. This is also a TREE_LIST
- of whatever you want. As a special case, it has the
- value `void_type_node' if it handles default exceptions. */
- tree handled;
-
- /* First insn of TRY block, in case resumptive model is needed. */
- rtx first_insn;
- /* Label for the catch clauses. */
- rtx except_label;
- /* Label for unhandled exceptions. */
- rtx unhandled_label;
- /* Label at the end of whole construct. */
- rtx after_label;
- /* Label which "escapes" the exception construct.
- Like EXIT_LABEL for BREAK construct, but for exceptions. */
- rtx escape_label;
- } except_stmt;
- } data;
- };
-
- /* Chain of all pending binding contours. */
- struct nesting *block_stack;
-
- /* Chain of all pending binding contours that restore stack levels
- or have cleanups. */
- struct nesting *stack_block_stack;
-
- /* Chain of all pending conditional statements. */
- struct nesting *cond_stack;
-
- /* Chain of all pending loops. */
- struct nesting *loop_stack;
-
- /* Chain of all pending case or switch statements. */
- struct nesting *case_stack;
-
- /* Chain of all pending exception contours. */
- struct nesting *except_stack;
-
- /* Separate chain including all of the above,
- chained through the `all' field. */
- struct nesting *nesting_stack;
-
- /* Number of entries on nesting_stack now. */
- int nesting_depth;
-
- /* Pop one of the sub-stacks, such as `loop_stack' or `cond_stack';
- and pop off `nesting_stack' down to the same level. */
-
- #define POPSTACK(STACK) \
- do { int initial_depth = nesting_stack->depth; \
- do { struct nesting *this = STACK; \
- STACK = this->next; \
- nesting_stack = this->all; \
- nesting_depth = this->depth; \
- obstack_free (&stmt_obstack, this); } \
- while (nesting_depth > initial_depth); } while (0)
-
- static int warn_if_unused_value ();
- static void expand_goto_internal ();
- static int expand_fixup ();
- static void fixup_gotos ();
- static void expand_cleanups ();
- static void fixup_cleanups ();
- static void expand_null_return_1 ();
- static int tail_recursion_args ();
- static void fixup_stack_slots ();
- static rtx fixup_stack_1 ();
- static rtx fixup_memory_subreg ();
- static rtx walk_fixup_memory_subreg ();
- static void fixup_var_refs ();
- static void fixup_var_refs_insns ();
- static rtx fixup_var_refs_1 ();
- static rtx parm_stack_loc ();
- static void optimize_bit_field ();
- static void do_jump_if_equal ();
-
- /* Emit a no-op instruction. */
-
- rtx
- emit_nop ()
- {
- rtx last_insn = get_last_insn ();
- if (!optimize
- && (GET_CODE (last_insn) == CODE_LABEL
- || prev_real_insn (last_insn) == 0))
- emit_insn (gen_nop ());
- }
-
- /* Return the rtx-label that corresponds to a LABEL_DECL,
- creating it if necessary. */
-
- rtx /* @@ non-static for case.c. */
- label_rtx (label)
- tree label;
- {
- if (TREE_CODE (label) != LABEL_DECL)
- abort ();
-
- if (DECL_RTL (label))
- return DECL_RTL (label);
-
- return DECL_RTL (label) = gen_label_rtx ();
- }
-
- /* Add an unconditional jump to LABEL as the next sequential instruction. */
-
- void
- emit_jump (label)
- rtx label;
- {
- do_pending_stack_adjust ();
- emit_jump_insn (gen_jump (label));
- emit_barrier ();
- }
-
- /* Handle goto statements and the labels that they can go to. */
-
- /* In some cases it is impossible to generate code for a forward goto
- until the label definition is seen. This happens when it may be necessary
- for the goto to reset the stack pointer: we don't yet know how to do that.
- So expand_goto puts an entry on this fixup list.
- Each time a binding contour that resets the stack is exited,
- we check each fixup.
- If the target label has now been defined, we can insert the proper code. */
-
- struct goto_fixup
- {
- /* Points to following fixup. */
- struct goto_fixup *next;
- /* Points to the insn before the jump insn.
- If more code must be inserted, it goes after this insn. */
- rtx before_jump;
- /* The LABEL_DECL that this jump is jumping to, or 0
- for break, continue or return. */
- tree target;
- /* The CODE_LABEL rtx that this is jumping to. */
- rtx target_rtl;
- /* The outermost stack level that should be restored for this jump.
- Each time a binding contour that resets the stack is exited,
- if the target label is *not* yet defined, this slot is updated. */
- rtx stack_level;
- /* List of lists of cleanup expressions to be run by this goto.
- There is one element for each block that this goto is within,
- once there are any cleanups at all.
- The TREE_VALUE contains the cleanup list of that block as of the
- time this goto was seen.
- The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
- tree cleanup_list_list;
- };
-
- static struct goto_fixup *goto_fixup_chain;
-
- /* Within any binding contour that must restore a stack level,
- all labels are recorded with a chain of these structures. */
-
- struct label_chain
- {
- /* Points to following fixup. */
- struct label_chain *next;
- tree label;
- };
-
- /* Specify the location in the RTL code of a label BODY,
- which is a LABEL_DECL tree node.
-
- This is used for the kind of label that the user can jump to with a
- goto statement, and for alternatives of a switch or case statement.
- RTL labels generated for loops and conditionals don't go through here;
- they are generated directly at the RTL level, by other functions below.
-
- Note that this has nothing to do with defining label *names*.
- Languages vary in how they do that and what that even means. */
-
- void
- expand_label (body)
- tree body;
- {
- struct label_chain *p;
-
- do_pending_stack_adjust ();
- emit_label (label_rtx (body));
-
- if (stack_block_stack != 0)
- {
- p = (struct label_chain *) oballoc (sizeof (struct label_chain));
- p->next = stack_block_stack->data.block.label_chain;
- stack_block_stack->data.block.label_chain = p;
- p->label = body;
- }
- }
-
- /* Generate RTL code for a `goto' statement with target label BODY.
- BODY should be a LABEL_DECL tree node that was or will later be
- defined with `expand_label'. */
-
- void
- expand_goto (body)
- tree body;
- {
- expand_goto_internal (body, label_rtx (body), 0);
- }
-
- /* Generate RTL code for a `goto' statement with target label BODY.
- LABEL should be a LABEL_REF.
- LAST_INSN, if non-0, is the rtx we should consider as the last
- insn emitted (for the purposes of cleaning up a return). */
-
- static void
- expand_goto_internal (body, label, last_insn)
- tree body;
- rtx label;
- rtx last_insn;
- {
- struct nesting *block;
- rtx stack_level = 0;
-
- if (GET_CODE (label) != CODE_LABEL)
- abort ();
-
- /* If label has already been defined, we can tell now
- whether and how we must alter the stack level. */
-
- if (PREV_INSN (label) != 0)
- {
- /* Find the innermost pending block that contains the label.
- (Check containment by comparing insn-uids.)
- Then restore the outermost stack level within that block,
- and do cleanups of all blocks contained in it. */
- for (block = block_stack; block; block = block->next)
- {
- if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
- break;
- if (block->data.block.stack_level != 0)
- stack_level = block->data.block.stack_level;
- /* Execute the cleanups for blocks we are exiting. */
- if (block->data.block.cleanups != 0)
- {
- expand_cleanups (block->data.block.cleanups, 0);
- do_pending_stack_adjust ();
- }
- }
-
- if (stack_level)
- emit_move_insn (stack_pointer_rtx, stack_level);
-
- if (body != 0 && TREE_PACKED (body))
- error ("jump to `%s' invalidly jumps into binding contour",
- IDENTIFIER_POINTER (DECL_NAME (body)));
- }
- /* Label not yet defined: may need to put this goto
- on the fixup list. */
- else if (! expand_fixup (body, label, last_insn))
- {
- /* No fixup needed. Record that the label is the target
- of at least one goto that has no fixup. */
- if (body != 0)
- TREE_ADDRESSABLE (body) = 1;
- }
-
- emit_jump (label);
- }
-
- /* Return truth-value of whether there are any cleanups from
- the current binding contour to the end of the current function's
- binding contours. */
- int
- any_pending_cleanups ()
- {
- struct nesting *block;
-
- if (block_stack->data.block.cleanups == 0
- || block_stack->data.block.outer_cleanups == empty_cleanup_list)
- return 0;
-
- for (block = block_stack->next; block; block = block->next)
- if (block->data.block.cleanups != 0)
- break;
-
- return block != 0;
- }
-
- /* Generate if necessary a fixup for a goto
- whose target label in tree structure (if any) is TREE_LABEL
- and whose target in rtl is RTL_LABEL.
-
- If LAST_INSN is nonzero, we pretend that the jump appears
- after insn LAST_INSN instead of at the current point in the insn stream.
-
- The fixup will be used later to insert insns at this point
- to restore the stack level as appropriate for the target label.
-
- Value is nonzero if a fixup is made. */
-
- static int
- expand_fixup (tree_label, rtl_label, last_insn)
- tree tree_label;
- rtx rtl_label;
- rtx last_insn;
- {
- struct nesting *block, *end_block;
-
- /* See if we can recognize which block the label will be output in.
- This is possible in some very common cases.
- If we succeed, set END_BLOCK to that block.
- Otherwise, set it to 0. */
-
- if (cond_stack
- && (rtl_label == cond_stack->data.cond.else_label
- || rtl_label == cond_stack->data.cond.after_label))
- end_block = cond_stack;
- /* If we are in a loop, recognize certain labels which
- are likely targets. This reduces the number of fixups
- we need to create. */
- else if (loop_stack
- && (rtl_label == loop_stack->data.loop.start_label
- || rtl_label == loop_stack->data.loop.end_label
- || rtl_label == loop_stack->data.loop.continue_label))
- end_block = loop_stack;
- else
- end_block = 0;
-
- /* Now set END_BLOCK to the binding level to which we will return. */
-
- if (end_block)
- {
- struct nesting *next_block = end_block->all;
- block = block_stack;
-
- /* First see if the END_BLOCK is inside the innermost binding level.
- If so, then no cleanups or stack levels are relevant. */
- while (next_block && next_block != block)
- next_block = next_block->all;
-
- if (next_block)
- return 0;
-
- /* Otherwise, set END_BLOCK to the innermost binding level
- which is outside the relevant control-structure nesting. */
- next_block = block_stack->next;
- for (block = block_stack; block != end_block; block = block->all)
- if (block == next_block)
- next_block = next_block->next;
- end_block = next_block;
- }
-
- /* Does any containing block have a stack level or cleanups?
- If not, no fixup is needed, and that is the normal case
- (the only case, for standard C). */
- for (block = block_stack; block != end_block; block = block->next)
- if (block->data.block.stack_level != 0
- || block->data.block.cleanups != 0)
- break;
-
- if (block != end_block)
- {
- /* Ok, a fixup is needed. Add a fixup to the list of such. */
- struct goto_fixup *fixup
- = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup));
- /* In case an old stack level is restored, make sure that comes
- after any pending stack adjust. */
- do_pending_stack_adjust ();
- fixup->before_jump = last_insn ? last_insn : get_last_insn ();
- fixup->target = tree_label;
- fixup->target_rtl = rtl_label;
- fixup->stack_level = 0;
- fixup->cleanup_list_list
- = (((block->data.block.outer_cleanups
- && block->data.block.outer_cleanups != empty_cleanup_list)
- || block->data.block.cleanups)
- ? tree_cons (0, block->data.block.cleanups,
- block->data.block.outer_cleanups)
- : 0);
- fixup->next = goto_fixup_chain;
- goto_fixup_chain = fixup;
- }
-
- return block != 0;
- }
-
- /* When exiting a binding contour, process all pending gotos requiring fixups.
- THISBLOCK is the structure that describes the block being exited.
- STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
- CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
- FIRST_INSN is the insn that began this contour.
-
- Gotos that jump out of this contour must restore the
- stack level and do the cleanups before actually jumping.
-
- DONT_JUMP_IN nonzero means report error there is a jump into this
- contour from before the beginning of the contour.
- This is also done if STACK_LEVEL is nonzero. */
-
- static void
- fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
- struct nesting *thisblock;
- rtx stack_level;
- tree cleanup_list;
- rtx first_insn;
- int dont_jump_in;
- {
- register struct goto_fixup *f, *prev;
-
- /* F is the fixup we are considering; PREV is the previous one. */
-
- for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
- {
- /* Test for a fixup that is inactive because it is already handled. */
- if (f->before_jump == 0)
- {
- /* Delete inactive fixup from the chain, if that is easy to do. */
- if (prev != 0)
- prev->next = f->next;
- }
- /* Has this fixup's target label been defined?
- If so, we can finalize it. */
- else if (PREV_INSN (f->target_rtl) != 0)
- {
- /* If this fixup jumped into this contour from before the beginning
- of this contour, report an error. */
- /* ??? Bug: this does not detect jumping in through intermediate
- blocks that have stack levels or cleanups.
- It detects only a problem with the innermost block
- around the label. */
- if (f->target != 0
- && (dont_jump_in || stack_level || cleanup_list)
- && INSN_UID (first_insn) > INSN_UID (f->before_jump)
- && ! TREE_ADDRESSABLE (f->target))
- {
- error_with_decl (f->target,
- "label `%s' used before containing binding contour");
- /* Prevent multiple errors for one label. */
- TREE_ADDRESSABLE (f->target) = 1;
- }
-
- /* Execute cleanups for blocks this jump exits. */
- if (f->cleanup_list_list)
- {
- tree lists;
- for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
- /* Marked elements correspond to blocks that have been closed.
- Do their cleanups. */
- if (TREE_ADDRESSABLE (lists)
- && TREE_VALUE (lists) != 0)
- fixup_cleanups (TREE_VALUE (lists), &f->before_jump);
- }
-
- /* Restore stack level for the biggest contour that this
- jump jumps out of. */
- if (f->stack_level)
- emit_insn_after (gen_move_insn (stack_pointer_rtx, f->stack_level),
- f->before_jump);
- f->before_jump = 0;
- }
- /* Label has still not appeared. If we are exiting a block with
- a stack level to restore, mark this stack level as needing
- restoration when the fixup is later finalized.
- Also mark the cleanup_list_list element for F
- that corresponds to this block, so that ultimately
- this block's cleanups will be executed by the code above. */
- /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared,
- it means the label is undefined. That's erroneous, but possible. */
- else if (thisblock != 0)
- {
- tree lists = f->cleanup_list_list;
- for (; lists; lists = TREE_CHAIN (lists))
- /* If the following elt. corresponds to our containing block
- then the elt. must be for this block. */
- if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
- TREE_ADDRESSABLE (lists) = 1;
-
- if (stack_level)
- f->stack_level = stack_level;
- }
- }
- }
-
- /* Generate RTL for an asm statement (explicit assembler code).
- BODY is a STRING_CST node containing the assembler code text. */
-
- void
- expand_asm (body)
- tree body;
- {
- emit_insn (gen_rtx (ASM_INPUT, VOIDmode,
- TREE_STRING_POINTER (body)));
- last_expr_type = 0;
- }
-
- /* Generate RTL for an asm statement with arguments.
- STRING is the instruction template.
- OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
- Each output or input has an expression in the TREE_VALUE and
- a constraint-string in the TREE_PURPOSE.
- CLOBBERS is a list of STRING_CST nodes each naming a hard register
- that is clobbered by this insn.
-
- Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
- Some elements of OUTPUTS may be replaced with trees representing temporary
- values. The caller should copy those temporary values to the originally
- specified lvalues.
-
- VOL nonzero means the insn is volatile; don't optimize it. */
-
- void
- expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
- tree string, outputs, inputs, clobbers;
- int vol;
- char *filename;
- int line;
- {
- rtvec argvec, constraints;
- rtx body;
- int ninputs = list_length (inputs);
- int noutputs = list_length (outputs);
- int nclobbers = list_length (clobbers);
- tree tail;
- register int i;
- /* Vector of RTX's of evaluated output operands. */
- rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
- /* The insn we have emitted. */
- rtx insn;
-
- last_expr_type = 0;
-
- for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
- {
- tree val = TREE_VALUE (tail);
- int j;
- int found_equal;
-
- /* If there's an erroneous arg, emit no insn. */
- if (TREE_TYPE (val) == error_mark_node)
- return;
-
- /* Make sure constraint has `=' and does not have `+'. */
-
- found_equal = 0;
- for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++)
- {
- if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+')
- {
- error ("output operand constraint contains `+'");
- return;
- }
- if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '=')
- found_equal = 1;
- }
- if (! found_equal)
- {
- error ("output operand constraint lacks `='");
- return;
- }
-
- /* If an output operand is not a variable or indirect ref,
- create a SAVE_EXPR which is a pseudo-reg
- to act as an intermediate temporary.
- Make the asm insn write into that, then copy it to
- the real output operand. */
-
- if (TREE_CODE (val) != VAR_DECL
- && TREE_CODE (val) != PARM_DECL
- && TREE_CODE (val) != INDIRECT_REF)
- {
- rtx reg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (val)));
- /* `build' isn't safe; it really expects args to be trees. */
- tree t = build_nt (SAVE_EXPR, val, reg);
-
- save_expr_regs = gen_rtx (EXPR_LIST, VOIDmode, reg, save_expr_regs);
- TREE_VALUE (tail) = t;
- TREE_TYPE (t) = TREE_TYPE (val);
- }
- output_rtx[i] = expand_expr (TREE_VALUE (tail), 0, VOIDmode, 0);
- }
-
- if (ninputs + noutputs > MAX_RECOG_OPERANDS)
- {
- error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
- return;
- }
-
- /* Make vectors for the expression-rtx and constraint strings. */
-
- argvec = rtvec_alloc (ninputs);
- constraints = rtvec_alloc (ninputs);
-
- body = gen_rtx (ASM_OPERANDS, VOIDmode,
- TREE_STRING_POINTER (string), "", 0, argvec, constraints,
- filename, line);
- MEM_VOLATILE_P (body) = vol;
-
- /* Eval the inputs and put them into ARGVEC.
- Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
-
- i = 0;
- for (tail = inputs; tail; tail = TREE_CHAIN (tail))
- {
- int j;
-
- /* If there's an erroneous arg, emit no insn,
- because the ASM_INPUT would get VOIDmode
- and that could cause a crash in reload. */
- if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
- return;
- if (TREE_PURPOSE (tail) == NULL_TREE)
- {
- error ("hard register `%s' listed as input operand to `asm'",
- TREE_STRING_POINTER (TREE_VALUE (tail)) );
- return;
- }
-
- /* Make sure constraint has neither `=' nor `+'. */
-
- for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++)
- if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '='
- || TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+')
- {
- error ("input operand constraint contains `%c'",
- TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]);
- return;
- }
-
- XVECEXP (body, 3, i) /* argvec */
- = expand_expr (TREE_VALUE (tail), 0, VOIDmode, 0);
- XVECEXP (body, 4, i) /* constraints */
- = gen_rtx (ASM_INPUT, TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
- TREE_STRING_POINTER (TREE_PURPOSE (tail)));
- i++;
- }
-
- /* Protect all the operands from the queue,
- now that they have all been evaluated. */
-
- for (i = 0; i < ninputs; i++)
- XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0);
-
- for (i = 0; i < noutputs; i++)
- output_rtx[i] = protect_from_queue (output_rtx[i], 1);
-
- /* Now, for each output, construct an rtx
- (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT
- ARGVEC CONSTRAINTS))
- If there is more than one, put them inside a PARALLEL. */
-
- if (noutputs == 1 && nclobbers == 0)
- {
- XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs));
- insn = emit_insn (gen_rtx (SET, VOIDmode, output_rtx[0], body));
- }
- else if (noutputs == 0 && nclobbers == 0)
- {
- /* No output operands: put in a raw ASM_OPERANDS rtx. */
- insn = emit_insn (body);
- }
- else
- {
- rtx obody = body;
- int num = noutputs;
- if (num == 0) num = 1;
- body = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num + nclobbers));
-
- /* For each output operand, store a SET. */
-
- for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
- {
- XVECEXP (body, 0, i)
- = gen_rtx (SET, VOIDmode,
- output_rtx[i],
- gen_rtx (ASM_OPERANDS, VOIDmode,
- TREE_STRING_POINTER (string),
- TREE_STRING_POINTER (TREE_PURPOSE (tail)),
- i, argvec, constraints,
- filename, line));
- MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
- }
-
- /* If there are no outputs (but there are some clobbers)
- store the bare ASM_OPERANDS into the PARALLEL. */
-
- if (i == 0)
- XVECEXP (body, 0, i++) = obody;
-
- /* Store (clobber REG) for each clobbered register specified. */
-
- for (tail = clobbers; tail; tail = TREE_CHAIN (tail), i++)
- {
- int j;
- char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
- extern char *reg_names[];
-
- for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
- if (!strcmp (regname, reg_names[j]))
- break;
-
- if (j == FIRST_PSEUDO_REGISTER)
- {
- error ("unknown register name `%s' in `asm'", regname);
- return;
- }
-
- /* Use QImode since that's guaranteed to clobber just one reg. */
- XVECEXP (body, 0, i)
- = gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, QImode, j));
- }
-
- insn = emit_insn (body);
- }
-
- last_expr_type = 0;
- }
-
- /* Nonzero if within a ({...}) grouping, in which case we must
- always compute a value for each expr-stmt in case it is the last one. */
-
- int expr_stmts_for_value;
-
- /* Generate RTL to evaluate the expression EXP
- and remember it in case this is the VALUE in a ({... VALUE; }) constr. */
-
- void
- expand_expr_stmt (exp)
- tree exp;
- {
- /* If -W, warn about statements with no side effects,
- except inside a ({...}) where they may be useful. */
- if (expr_stmts_for_value == 0 && exp != error_mark_node)
- {
- if (! TREE_VOLATILE (exp) && (extra_warnings || warn_unused))
- warning_with_file_and_line (emit_filename, emit_lineno,
- "statement with no effect");
- else if (warn_unused)
- warn_if_unused_value (exp);
- }
- last_expr_type = TREE_TYPE (exp);
- if (! flag_syntax_only)
- last_expr_value = expand_expr (exp, expr_stmts_for_value ? 0 : const0_rtx,
- VOIDmode, 0);
- emit_queue ();
- }
-
- /* Warn if EXP contains any computations whose results are not used.
- Return 1 if a warning is printed; 0 otherwise. */
-
- static int
- warn_if_unused_value (exp)
- tree exp;
- {
- switch (TREE_CODE (exp))
- {
- case PREINCREMENT_EXPR:
- case POSTINCREMENT_EXPR:
- case PREDECREMENT_EXPR:
- case POSTDECREMENT_EXPR:
- case MODIFY_EXPR:
- case INIT_EXPR:
- case NEW_EXPR:
- case CALL_EXPR:
- case METHOD_CALL_EXPR:
- case RTL_EXPR:
- case WRAPPER_EXPR:
- case ANTI_WRAPPER_EXPR:
- case WITH_CLEANUP_EXPR:
- /* We don't warn about COND_EXPR because it may be a useful
- construct if either arm contains a side effect. */
- case COND_EXPR:
- return 0;
-
- /* These kinds of exprs are really stmts. What to do? */
- case LOOP_STMT:
- case LET_STMT:
- case IF_STMT:
- return 0;
-
- case TRUTH_ORIF_EXPR:
- case TRUTH_ANDIF_EXPR:
- /* In && or ||, warn if 2nd operand has no side effect. */
- return warn_if_unused_value (TREE_OPERAND (exp, 1));
-
- case COMPOUND_EXPR:
- if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
- return 1;
- return warn_if_unused_value (TREE_OPERAND (exp, 1));
-
- case NOP_EXPR:
- case CONVERT_EXPR:
- /* Don't warn about values cast to void. */
- if (TREE_TYPE (exp) == void_type_node)
- return 0;
- /* Assignment to a cast results in a cast of a modify.
- Don't complain about that. */
- if (TREE_CODE (TREE_OPERAND (exp, 0)) == MODIFY_EXPR)
- return 0;
-
- default:
- warning_with_file_and_line (emit_filename, emit_lineno,
- "value computed is not used");
- return 1;
- }
- }
-
- /* Clear out the memory of the last expression evaluated. */
-
- void
- clear_last_expr ()
- {
- last_expr_type = 0;
- }
-
- /* Begin a statement which will return a value.
- Return the RTL_EXPR for this statement expr.
- The caller must save that value and pass it to expand_end_stmt_expr. */
-
- tree
- expand_start_stmt_expr ()
- {
- rtx save = start_sequence ();
- /* Make the RTL_EXPR node temporary, not momentary,
- so that rtl_expr_chain doesn't become garbage. */
- int momentary = suspend_momentary ();
- tree t = make_node (RTL_EXPR);
- resume_momentary (momentary);
- RTL_EXPR_RTL (t) = save;
- NO_DEFER_POP;
- expr_stmts_for_value++;
- return t;
- }
-
- /* Restore the previous state at the end of a statement that returns a value.
- Returns a tree node representing the statement's value and the
- insns to compute the value.
-
- The nodes of that expression have been freed by now, so we cannot use them.
- But we don't want to do that anyway; the expression has already been
- evaluated and now we just want to use the value. So generate a RTL_EXPR
- with the proper type and RTL value.
-
- If the last substatement was not an expression,
- return something with type `void'. */
-
- tree
- expand_end_stmt_expr (t)
- tree t;
- {
- rtx saved = RTL_EXPR_RTL (t);
-
- OK_DEFER_POP;
-
- if (last_expr_type == 0)
- {
- last_expr_type = void_type_node;
- last_expr_value = const0_rtx;
- }
- TREE_TYPE (t) = last_expr_type;
- RTL_EXPR_RTL (t) = last_expr_value;
- RTL_EXPR_SEQUENCE (t) = get_insns ();
-
- rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
-
- end_sequence (saved);
-
- /* Don't consider deleting this expr or containing exprs at tree level. */
- TREE_VOLATILE (t) = 1;
- /* Propagate volatility of the actual RTL expr. */
- TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
-
- last_expr_type = 0;
- expr_stmts_for_value--;
-
- return t;
- }
-
- int
- in_try_block (level)
- int level;
- {
- struct nesting *n = except_stack;
- while (1)
- {
- while (n && n->data.except_stmt.after_label != 0)
- n = n->next;
- if (n == 0)
- return 0;
- if (level == 0)
- return n != 0;
- level--;
- n = n->next;
- }
- }
-
- int
- in_except_block (level)
- int level;
- {
- struct nesting *n = except_stack;
- while (1)
- {
- while (n && n->data.except_stmt.after_label == 0)
- n = n->next;
- if (n == 0)
- return 0;
- if (level == 0)
- return n != 0;
- level--;
- n = n->next;
- }
- }
-
- int
- in_exception_handler (level)
- int level;
- {
- struct nesting *n = except_stack;
- while (n && level--)
- n = n->next;
- return n != 0;
- }
-
- int
- expand_raise (ex)
- tree ex;
- {
- tree *raises_ptr;
-
- if (except_stack == 0)
- return 0;
- raises_ptr = &except_stack->data.except_stmt.raised;
- if (! value_member (ex, *raises_ptr))
- *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr);
- return 1;
- }
-
- /* Generate RTL for the start of a try block.
-
- TRY_CLAUSE is the condition to test to enter the try block. */
- void
- expand_start_try (try_clause, exitflag, escapeflag)
- tree try_clause;
- int exitflag;
- int escapeflag;
- {
- struct nesting *thishandler
- = (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting));
-
- /* Make an entry on cond_stack for the cond we are entering. */
-
- thishandler->next = except_stack;
- thishandler->all = nesting_stack;
- thishandler->depth = ++nesting_depth;
- thishandler->data.except_stmt.raised = 0;
- thishandler->data.except_stmt.handled = 0;
- thishandler->data.except_stmt.first_insn = get_insns ();
- thishandler->data.except_stmt.except_label = gen_label_rtx ();
- thishandler->data.except_stmt.unhandled_label = 0;
- thishandler->data.except_stmt.after_label = 0;
- thishandler->data.except_stmt.escape_label
- = escapeflag ? thishandler->data.except_stmt.except_label : 0;
- thishandler->exit_label = exitflag ? gen_label_rtx () : 0;
- except_stack = thishandler;
- nesting_stack = thishandler;
-
- do_jump (try_clause, thishandler->data.except_stmt.except_label, NULL);
- }
-
- /* End of a TRY block. Nothing to do for now. */
- void
- expand_end_try ()
- {
- except_stack->data.except_stmt.after_label = gen_label_rtx ();
- expand_goto_internal (NULL, except_stack->data.except_stmt.after_label, 0);
- }
-
- void
- expand_start_except (exitflag, escapeflag)
- int exitflag;
- int escapeflag;
- {
- if (exitflag)
- {
- struct nesting *n;
- /* An `exit' from catch clauses goes out to next exit level,
- if there is one. Otherwise, it just goes to the end
- of the construct. */
- for (n = except_stack->next; n; n = n->next)
- if (n->exit_label != 0)
- {
- except_stack->exit_label = n->exit_label;
- break;
- }
- if (n == 0)
- except_stack->exit_label = except_stack->data.except_stmt.after_label;
- }
- if (escapeflag)
- {
- struct nesting *n;
- /* An `escape' from catch clauses goes out to next escape level,
- if there is one. Otherwise, it just goes to the end
- of the construct. */
- for (n = except_stack->next; n; n = n->next)
- if (n->data.except_stmt.escape_label != 0)
- {
- except_stack->data.except_stmt.escape_label
- = n->data.except_stmt.escape_label;
- break;
- }
- if (n == 0)
- except_stack->data.except_stmt.escape_label
- = except_stack->data.except_stmt.after_label;
- }
- do_pending_stack_adjust ();
- emit_label (except_stack->data.except_stmt.except_label);
- }
-
- int
- expand_escape_except ()
- {
- struct nesting *n;
- last_expr_type = 0;
- for (n = except_stack; n; n = n->next)
- if (n->data.except_stmt.escape_label != 0)
- {
- expand_goto_internal (0, n->data.except_stmt.escape_label, 0);
- return 1;
- }
-
- return 0;
- }
-
- tree
- expand_end_except ()
- {
- struct nesting *n;
- tree raised = NULL_TREE;
-
- do_pending_stack_adjust ();
- emit_label (except_stack->data.except_stmt.after_label);
-
- n = except_stack->next;
- if (n)
- {
- /* Propagate exceptions raised but not handled to next
- highest level. */
- tree handled = except_stack->data.except_stmt.raised;
- if (handled != void_type_node)
- {
- tree prev = NULL_TREE;
- raised = except_stack->data.except_stmt.raised;
- while (handled)
- {
- tree this_raise;
- for (this_raise = raised, prev = 0; this_raise;
- this_raise = TREE_CHAIN (this_raise))
- {
- if (value_member (TREE_VALUE (this_raise), handled))
- {
- if (prev)
- TREE_CHAIN (prev) = TREE_CHAIN (this_raise);
- else
- {
- raised = TREE_CHAIN (raised);
- if (raised == NULL_TREE)
- goto nada;
- }
- }
- else
- prev = this_raise;
- }
- handled = TREE_CHAIN (handled);
- }
- if (prev == NULL_TREE)
- prev = raised;
- if (prev)
- TREE_CHAIN (prev) = n->data.except_stmt.raised;
- nada:
- n->data.except_stmt.raised = raised;
- }
- }
-
- POPSTACK (except_stack);
- last_expr_type = 0;
- return raised;
- }
-
- int
- expand_catch (ex)
- tree ex;
- {
- tree *raises_ptr;
-
- if (except_stack == 0)
- return 0;
- raises_ptr = &except_stack->data.except_stmt.handled;
- if (*raises_ptr != void_type_node
- && ex != NULL_TREE
- && ! value_member (ex, *raises_ptr))
- *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr);
- return 1;
- }
-
- int
- expand_catch_default ()
- {
- if (except_stack == 0)
- return 0;
- except_stack->data.except_stmt.handled = void_type_node;
- }
-
- int
- expand_end_catch ()
- {
- if (except_stack == 0 || except_stack->data.except_stmt.after_label == 0)
- return 0;
- expand_goto_internal (0, except_stack->data.except_stmt.after_label, 0);
- return 1;
- }
-
- /* Generate RTL for the start of an if-then. COND is the expression
- whose truth should be tested.
-
- If EXITFLAG is nonzero, this conditional is visible to
- `exit_something'. */
-
- void
- expand_start_cond (cond, exitflag)
- tree cond;
- int exitflag;
- {
- struct nesting *thiscond
- = (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting));
-
- /* Make an entry on cond_stack for the cond we are entering. */
-
- thiscond->next = cond_stack;
- thiscond->all = nesting_stack;
- thiscond->depth = ++nesting_depth;
- thiscond->data.cond.after_label = 0;
- thiscond->data.cond.else_label = gen_label_rtx ();
- thiscond->exit_label = exitflag ? thiscond->data.cond.else_label : 0;
- cond_stack = thiscond;
- nesting_stack = thiscond;
-
- do_jump (cond, thiscond->data.cond.else_label, NULL);
- }
-
- /* Generate RTL for the end of an if-then with no else-clause.
- Pop the record for it off of cond_stack. */
-
- void
- expand_end_cond ()
- {
- struct nesting *thiscond = cond_stack;
-
- do_pending_stack_adjust ();
- emit_label (thiscond->data.cond.else_label);
-
- POPSTACK (cond_stack);
- last_expr_type = 0;
- }
-
- /* Generate RTL between the then-clause and the else-clause
- of an if-then-else. */
-
- void
- expand_start_else ()
- {
- cond_stack->data.cond.after_label = gen_label_rtx ();
- if (cond_stack->exit_label != 0)
- cond_stack->exit_label = cond_stack->data.cond.after_label;
- emit_jump (cond_stack->data.cond.after_label);
- if (cond_stack->data.cond.else_label)
- emit_label (cond_stack->data.cond.else_label);
- }
-
- /* Generate RTL for the end of an if-then-else.
- Pop the record for it off of cond_stack. */
-
- void
- expand_end_else ()
- {
- struct nesting *thiscond = cond_stack;
-
- do_pending_stack_adjust ();
- /* Note: a syntax error can cause this to be called
- without first calling `expand_start_else'. */
- if (thiscond->data.cond.after_label)
- emit_label (thiscond->data.cond.after_label);
-
- POPSTACK (cond_stack);
- last_expr_type = 0;
- }
-
- /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
- loop should be exited by `exit_something'. This is a loop for which
- `expand_continue' will jump to the top of the loop.
-
- Make an entry on loop_stack to record the labels associated with
- this loop. */
-
- void
- expand_start_loop (exit_flag)
- int exit_flag;
- {
- register struct nesting *thisloop
- = (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting));
-
- /* Make an entry on loop_stack for the loop we are entering. */
-
- thisloop->next = loop_stack;
- thisloop->all = nesting_stack;
- thisloop->depth = ++nesting_depth;
- thisloop->data.loop.start_label = gen_label_rtx ();
- thisloop->data.loop.end_label = gen_label_rtx ();
- thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
- thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
- loop_stack = thisloop;
- nesting_stack = thisloop;
-
- do_pending_stack_adjust ();
- emit_queue ();
- emit_note (0, NOTE_INSN_LOOP_BEG);
- emit_label (thisloop->data.loop.start_label);
- }
-
- /* Like expand_start_loop but for a loop where the continuation point
- (for expand_continue_loop) will be specified explicitly. */
-
- void
- expand_start_loop_continue_elsewhere (exit_flag)
- int exit_flag;
- {
- expand_start_loop (exit_flag);
- loop_stack->data.loop.continue_label = gen_label_rtx ();
- }
-
- /* Specify the continuation point for a loop started with
- expand_start_loop_continue_elsewhere.
- Use this at the point in the code to which a continue statement
- should jump. */
-
- void
- expand_loop_continue_here ()
- {
- do_pending_stack_adjust ();
- emit_note (0, NOTE_INSN_LOOP_CONT);
- emit_label (loop_stack->data.loop.continue_label);
- }
-
- /* Finish a loop. Generate a jump back to the top and the loop-exit label.
- Pop the block off of loop_stack. */
-
- void
- expand_end_loop ()
- {
- register rtx insn = get_last_insn ();
- register rtx start_label = loop_stack->data.loop.start_label;
-
- do_pending_stack_adjust ();
-
- /* If optimizing, perhaps reorder the loop. If the loop
- starts with a conditional exit, roll that to the end
- where it will optimize together with the jump back. */
- if (optimize
- &&
- ! (GET_CODE (insn) == JUMP_INSN
- && GET_CODE (PATTERN (insn)) == SET
- && SET_DEST (PATTERN (insn)) == pc_rtx
- && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
- {
- /* Scan insns from the top of the loop looking for a qualified
- conditional exit. */
- for (insn = loop_stack->data.loop.start_label; insn; insn= NEXT_INSN (insn))
- if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == SET
- && SET_DEST (PATTERN (insn)) == pc_rtx
- && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE
- &&
- ((GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == LABEL_REF
- && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0)
- == loop_stack->data.loop.end_label))
- ||
- (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 2)) == LABEL_REF
- && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 2), 0)
- == loop_stack->data.loop.end_label))))
- break;
- if (insn != 0)
- {
- /* We found one. Move everything from there up
- to the end of the loop, and add a jump into the loop
- to jump to there. */
- register rtx newstart_label = gen_label_rtx ();
-
- emit_label_after (newstart_label, PREV_INSN (start_label));
- reorder_insns (start_label, insn, get_last_insn ());
- emit_jump_insn_after (gen_jump (start_label), PREV_INSN (newstart_label));
- emit_barrier_after (PREV_INSN (newstart_label));
- start_label = newstart_label;
- }
- }
-
- emit_jump (start_label);
- emit_note (0, NOTE_INSN_LOOP_END);
- emit_label (loop_stack->data.loop.end_label);
-
- POPSTACK (loop_stack);
-
- last_expr_type = 0;
- }
-
- /* Generate a jump to the current loop's continue-point.
- This is usually the top of the loop, but may be specified
- explicitly elsewhere. If not currently inside a loop,
- return 0 and do nothing; caller will print an error message. */
-
- int
- expand_continue_loop ()
- {
- last_expr_type = 0;
- if (loop_stack == 0)
- return 0;
- expand_goto_internal (0, loop_stack->data.loop.continue_label, 0);
- return 1;
- }
-
- /* Generate a jump to exit the current loop. If not currently inside a loop,
- return 0 and do nothing; caller will print an error message. */
-
- int
- expand_exit_loop ()
- {
- last_expr_type = 0;
- if (loop_stack == 0)
- return 0;
- expand_goto_internal (0, loop_stack->data.loop.end_label, 0);
- return 1;
- }
-
- /* Generate a conditional jump to exit the current loop if COND
- evaluates to zero. If not currently inside a loop,
- return 0 and do nothing; caller will print an error message. */
-
- int
- expand_exit_loop_if_false (cond)
- tree cond;
- {
- last_expr_type = 0;
- if (loop_stack == 0)
- return 0;
- do_jump (cond, loop_stack->data.loop.end_label, NULL);
- return 1;
- }
-
- /* Return non-zero if currently inside a loop. */
-
- int
- inside_loop ()
- {
- return loop_stack != 0;
- }
-
- /* Generate a jump to exit the current loop, conditional, binding contour
- or case statement. Not all such constructs are visible to this function,
- only those started with EXIT_FLAG nonzero. Individual languages use
- the EXIT_FLAG parameter to control which kinds of constructs you can
- exit this way.
-
- If not currently inside anything that can be exited,
- return 0 and do nothing; caller will print an error message. */
-
- int
- expand_exit_something ()
- {
- struct nesting *n;
- last_expr_type = 0;
- for (n = nesting_stack; n; n = n->all)
- if (n->exit_label != 0)
- {
- expand_goto_internal (0, n->exit_label, 0);
- return 1;
- }
-
- return 0;
- }
-
- /* Generate RTL to return from the current function, with no value.
- (That is, we do not do anything about returning any value.) */
-
- void
- expand_null_return ()
- {
- struct nesting *block = block_stack;
- rtx last_insn = 0;
-
- /* Does any pending block have cleanups? */
-
- while (block && block->data.block.cleanups == 0)
- block = block->next;
-
- /* If yes, use a goto to return, since that runs cleanups. */
-
- expand_null_return_1 (last_insn, block != 0);
- }
-
- /* Output a return with no value. If LAST_INSN is nonzero,
- pretend that the return takes place after LAST_INSN.
- If USE_GOTO is nonzero then don't use a return instruction;
- go to the return label instead. This causes any cleanups
- of pending blocks to be executed normally. */
-
- static void
- expand_null_return_1 (last_insn, use_goto)
- rtx last_insn;
- int use_goto;
- {
- rtx end_label = cleanup_label ? cleanup_label : return_label;
-
- clear_pending_stack_adjust ();
- do_pending_stack_adjust ();
- last_expr_type = 0;
-
- /* PCC-struct return always uses an epilogue. */
- if (current_function_returns_pcc_struct || use_goto)
- {
- if (end_label == 0)
- end_label = return_label = gen_label_rtx ();
- expand_goto_internal (0, end_label, last_insn);
- return;
- }
-
- /* Otherwise output a simple return-insn if one is available,
- unless it won't do the job. */
- #ifdef HAVE_return
- if (HAVE_return && cleanup_label == 0)
- {
- emit_jump_insn (gen_return ());
- emit_barrier ();
- return;
- }
- #endif
-
- /* Otherwise jump to the epilogue. */
- expand_goto_internal (0, end_label, last_insn);
- }
-
- /* Generate RTL to evaluate the expression RETVAL and return it
- from the current function. */
-
- void
- expand_return (retval)
- tree retval;
- {
- /* If there are any cleanups to be performed, then they will
- be inserted following LAST_INSN. It is desirable
- that the last_insn, for such purposes, should be the
- last insn before computing the return value. Otherwise, cleanups
- which call functions can clobber the return value. */
- /* ??? rms: I think that is erroneous, because in C++ it would
- run destructors on variables that might be used in the subsequent
- computation of the return value. */
- rtx last_insn = 0;
- register rtx val = 0;
- register rtx op0;
- tree retval_rhs;
- int cleanups;
- struct nesting *block;
-
- /* Are any cleanups needed? E.g. C++ destructors to be run? */
- cleanups = 0;
- for (block = block_stack; block; block = block->next)
- if (block->data.block.cleanups != 0)
- {
- cleanups = 1;
- break;
- }
-
- if (TREE_CODE (retval) == RESULT_DECL)
- retval_rhs = retval;
- else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
- && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
- retval_rhs = TREE_OPERAND (retval, 1);
- else if (TREE_TYPE (retval) == void_type_node)
- /* Recognize tail-recursive call to void function. */
- retval_rhs = retval;
- else
- retval_rhs = NULL_TREE;
-
- /* Only use `last_insn' if there are cleanups which must be run. */
- if (cleanups || cleanup_label != 0)
- last_insn = get_last_insn ();
-
- /* For tail-recursive call to current function,
- just jump back to the beginning.
- It's unsafe if any auto variable in this function
- has its address taken; for simplicity,
- require stack frame to be empty. */
- if (optimize && retval_rhs != 0
- && frame_offset == STARTING_FRAME_OFFSET
- && TREE_CODE (retval_rhs) == CALL_EXPR
- && TREE_CODE (TREE_OPERAND (retval_rhs, 0)) == ADDR_EXPR
- && TREE_OPERAND (TREE_OPERAND (retval_rhs, 0), 0) == this_function
- /* Finish checking validity, and if valid emit code
- to set the argument variables for the new call. */
- && tail_recursion_args (TREE_OPERAND (retval_rhs, 1),
- DECL_ARGUMENTS (this_function)))
- {
- if (tail_recursion_label == 0)
- {
- tail_recursion_label = gen_label_rtx ();
- emit_label_after (tail_recursion_label,
- tail_recursion_reentry);
- }
- expand_goto_internal (0, tail_recursion_label, last_insn);
- emit_barrier ();
- return;
- }
- #ifdef HAVE_return
- /* This optimization is safe if there are local cleanups
- because expand_null_return takes care of them.
- ??? I think it should also be safe when there is a cleanup label,
- because expand_null_return takes care of them, too.
- Any reason why not? */
- if (HAVE_return && cleanup_label == 0
- && ! current_function_returns_pcc_struct)
- {
- /* If this is return x == y; then generate
- if (x == y) return 1; else return 0;
- if we can do it with explicit return insns. */
- if (retval_rhs)
- switch (TREE_CODE (retval_rhs))
- {
- case EQ_EXPR:
- case NE_EXPR:
- case GT_EXPR:
- case GE_EXPR:
- case LT_EXPR:
- case LE_EXPR:
- case TRUTH_ANDIF_EXPR:
- case TRUTH_ORIF_EXPR:
- case TRUTH_AND_EXPR:
- case TRUTH_OR_EXPR:
- case TRUTH_NOT_EXPR:
- op0 = gen_label_rtx ();
- val = DECL_RTL (DECL_RESULT (this_function));
- jumpifnot (retval_rhs, op0);
- emit_move_insn (val, const1_rtx);
- emit_insn (gen_rtx (USE, VOIDmode, val));
- expand_null_return ();
- emit_label (op0);
- emit_move_insn (val, const0_rtx);
- emit_insn (gen_rtx (USE, VOIDmode, val));
- expand_null_return ();
- return;
- }
- }
- #endif /* HAVE_return */
-
- if (cleanups
- && retval_rhs != 0
- && TREE_TYPE (retval_rhs) != void_type_node
- && GET_CODE (DECL_RTL (DECL_RESULT (this_function))) == REG)
- {
- rtx last_insn;
- /* Calculate the return value into a pseudo reg. */
- val = expand_expr (retval_rhs, 0, VOIDmode, 0);
- emit_queue ();
- /* Put the cleanups here. */
- last_insn = get_last_insn ();
- /* Copy the value into hard return reg. */
- emit_move_insn (DECL_RTL (DECL_RESULT (this_function)), val);
- val = DECL_RTL (DECL_RESULT (this_function));
-
- if (GET_CODE (val) == REG)
- emit_insn (gen_rtx (USE, VOIDmode, val));
- expand_null_return_1 (last_insn, cleanups);
- }
- else
- {
- /* No cleanups or no hard reg used;
- calculate value into hard return reg
- and let cleanups come after. */
- val = expand_expr (retval, 0, VOIDmode, 0);
- emit_queue ();
-
- val = DECL_RTL (DECL_RESULT (this_function));
- if (val && GET_CODE (val) == REG)
- emit_insn (gen_rtx (USE, VOIDmode, val));
- expand_null_return ();
- }
- }
-
- /* Return 1 if the end of the generated RTX is not a barrier.
- This means code already compiled can drop through. */
-
- int
- drop_through_at_end_p ()
- {
- rtx insn = get_last_insn ();
- while (insn && GET_CODE (insn) == NOTE)
- insn = PREV_INSN (insn);
- return insn && GET_CODE (insn) != BARRIER;
- }
-
- /* Emit code to alter this function's formal parms for a tail-recursive call.
- ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
- FORMALS is the chain of decls of formals.
- Return 1 if this can be done;
- otherwise return 0 and do not emit any code. */
-
- static int
- tail_recursion_args (actuals, formals)
- tree actuals, formals;
- {
- register tree a = actuals, f = formals;
- register int i;
- register rtx *argvec;
-
- /* Check that number and types of actuals are compatible
- with the formals. This is not always true in valid C code.
- Also check that no formal needs to be addressable
- and that all formals are scalars. */
-
- /* Also count the args. */
-
- for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
- {
- if (TREE_TYPE (TREE_VALUE (a)) != TREE_TYPE (f))
- return 0;
- if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
- return 0;
- }
- if (a != 0 || f != 0)
- return 0;
-
- /* Compute all the actuals. */
-
- argvec = (rtx *) alloca (i * sizeof (rtx));
-
- for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
- argvec[i] = expand_expr (TREE_VALUE (a), 0, VOIDmode, 0);
-
- /* Find which actual values refer to current values of previous formals.
- Copy each of them now, before any formal is changed. */
-
- for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
- {
- int copy = 0;
- register int j;
- for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
- if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
- { copy = 1; break; }
- if (copy)
- argvec[i] = copy_to_reg (argvec[i]);
- }
-
- /* Store the values of the actuals into the formals. */
-
- for (f = formals, a = actuals, i = 0; f;
- f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
- {
- if (DECL_MODE (f) == GET_MODE (argvec[i]))
- emit_move_insn (DECL_RTL (f), argvec[i]);
- else
- convert_move (DECL_RTL (f), argvec[i],
- TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
- }
-
- return 1;
- }
-
- /* Generate the RTL code for entering a binding contour.
- The variables are declared one by one, by calls to `expand_decl'.
-
- EXIT_FLAG is nonzero if this construct should be visible to
- `exit_something'. */
-
- void
- expand_start_bindings (exit_flag)
- int exit_flag;
- {
- struct nesting *thisblock
- = (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting));
-
- rtx note = emit_note (0, NOTE_INSN_BLOCK_BEG);
-
- /* Make an entry on block_stack for the block we are entering. */
-
- thisblock->next = block_stack;
- thisblock->all = nesting_stack;
- thisblock->depth = ++nesting_depth;
- thisblock->data.block.stack_level = 0;
- thisblock->data.block.cleanups = 0;
- /* We build this even if the cleanups lists are empty
- because we rely on having an element in the chain
- for each block that is pending. */
- if (block_stack)
- {
- if (block_stack->data.block.cleanups == NULL_TREE
- && (block_stack->data.block.outer_cleanups == NULL_TREE
- || block_stack->data.block.outer_cleanups == empty_cleanup_list))
- thisblock->data.block.outer_cleanups = empty_cleanup_list;
- else
- thisblock->data.block.outer_cleanups
- = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
- block_stack->data.block.outer_cleanups);
- }
- else
- thisblock->data.block.outer_cleanups = 0;
- thisblock->data.block.label_chain = 0;
- thisblock->data.block.innermost_stack_block = stack_block_stack;
- thisblock->data.block.first_insn = note;
- thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
- block_stack = thisblock;
- nesting_stack = thisblock;
- }
-
- /* Output a USE for any register use in RTL.
- This is used with -noreg to mark the extent of lifespan
- of any registers used in a user-visible variable's DECL_RTL. */
-
- void
- use_variable (rtl)
- rtx rtl;
- {
- if (GET_CODE (rtl) == REG)
- /* This is a register variable. */
- emit_insn (gen_rtx (USE, VOIDmode, rtl));
- else if (GET_CODE (rtl) == MEM
- && GET_CODE (XEXP (rtl, 0)) == REG
- && XEXP (rtl, 0) != frame_pointer_rtx
- && XEXP (rtl, 0) != arg_pointer_rtx)
- /* This is a variable-sized structure. */
- emit_insn (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)));
- }
-
- /* Like use_variable except that it outputs the USEs after INSN
- instead of at the end of the insn-chain. */
-
- static void
- use_variable_after (rtl, insn)
- rtx rtl, insn;
- {
- if (GET_CODE (rtl) == REG)
- /* This is a register variable. */
- emit_insn_after (gen_rtx (USE, VOIDmode, rtl), insn);
- else if (GET_CODE (rtl) == MEM
- && GET_CODE (XEXP (rtl, 0)) == REG
- && XEXP (rtl, 0) != frame_pointer_rtx
- && XEXP (rtl, 0) != arg_pointer_rtx)
- /* This is a variable-sized structure. */
- emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)), insn);
- }
-
- /* Generate RTL code to terminate a binding contour.
- VARS is the chain of VAR_DECL nodes
- for the variables bound in this contour.
- MARK_ENDS is nonzero if we should put a note at the beginning
- and end of this binding contour.
-
- DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
- (That is true automatically if the contour has a saved stack level.) */
-
- void
- expand_end_bindings (vars, mark_ends, dont_jump_in)
- tree vars;
- int mark_ends;
- int dont_jump_in;
- {
- register struct nesting *thisblock = block_stack;
- register tree decl;
-
- if (warn_unused)
- for (decl = vars; decl; decl = TREE_CHAIN (decl))
- if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL)
- warning_with_decl (decl, "unused variable `%s'");
-
- /* Mark the beginning and end of the scope if requested. */
-
- if (mark_ends)
- emit_note (0, NOTE_INSN_BLOCK_END);
- else
- /* Get rid of the beginning-mark if we don't make an end-mark. */
- NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
-
- if (thisblock->exit_label)
- {
- do_pending_stack_adjust ();
- emit_label (thisblock->exit_label);
- }
-
- if (dont_jump_in
- || thisblock->data.block.stack_level != 0
- || thisblock->data.block.cleanups != 0)
- {
- struct label_chain *chain;
-
- /* Any labels in this block are no longer valid to go to.
- Mark them to cause an error message. */
- for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
- {
- TREE_PACKED (chain->label) = 1;
- /* If any goto without a fixup came to this label,
- that must be an error, because gotos without fixups
- come from outside all saved stack-levels and all cleanups. */
- if (TREE_ADDRESSABLE (chain->label))
- error_with_decl (chain->label,
- "label `%s' used before containing binding contour");
- }
- }
-
- /* Restore stack level in effect before the block
- (only if variable-size objects allocated). */
-
- if (thisblock->data.block.stack_level != 0
- || thisblock->data.block.cleanups != 0)
- {
- /* Perform any cleanups associated with the block. */
- int old_expr_stmts_for_value = expr_stmts_for_value;
- rtx old_last_expr_value = last_expr_value;
- tree old_last_expr_type = last_expr_type;
-
- /* Don't let cleanups affect ({...}) constructs. */
- expr_stmts_for_value = 0;
- expand_cleanups (thisblock->data.block.cleanups, 0);
- do_pending_stack_adjust ();
- expr_stmts_for_value = old_expr_stmts_for_value;
- last_expr_value = old_last_expr_value;
- last_expr_type = old_last_expr_type;
-
- /* Restore the stack level. */
-
- if (thisblock->data.block.stack_level != 0)
- emit_move_insn (stack_pointer_rtx,
- thisblock->data.block.stack_level);
-
- /* Any gotos out of this block must also do these things.
- Also report any gotos with fixups that came to labels in this level. */
- fixup_gotos (thisblock,
- thisblock->data.block.stack_level,
- thisblock->data.block.cleanups,
- thisblock->data.block.first_insn,
- dont_jump_in);
- }
-
- /* If doing stupid register allocation, make sure lives of all
- register variables declared here extend thru end of scope. */
-
- if (obey_regdecls)
- for (decl = vars; decl; decl = TREE_CHAIN (decl))
- {
- rtx rtl = DECL_RTL (decl);
- if (TREE_CODE (decl) == VAR_DECL && rtl != 0)
- use_variable (rtl);
- }
-
- /* Restore block_stack level for containing block. */
-
- stack_block_stack = thisblock->data.block.innermost_stack_block;
- POPSTACK (block_stack);
- }
-
- /* Generate RTL for the automatic variable declaration DECL.
- (Other kinds of declarations are simply ignored if seen here.)
- There is no special support here for C++ constructors.
- They should be handled by the proper code in DECL_INITIAL. */
-
- void
- expand_decl (decl)
- register tree decl;
- {
- struct nesting *thisblock = block_stack;
- tree type = TREE_TYPE (decl);
-
- /* Only automatic variables need any expansion done.
- Static and external variables, and external functions,
- will be handled by `assemble_variable' (called from finish_decl).
- TYPE_DECL and CONST_DECL require nothing.
- PARM_DECLs are handled in `assign_parms'. */
-
- if (TREE_CODE (decl) != VAR_DECL)
- return;
- if (TREE_STATIC (decl) || TREE_EXTERNAL (decl))
- return;
-
- /* Create the RTL representation for the variable. */
-
- if (type == error_mark_node)
- DECL_RTL (decl) = gen_rtx (MEM, BLKmode, const0_rtx);
- else if (DECL_SIZE (decl) == 0)
- /* Variable with incomplete type. */
- {
- if (DECL_INITIAL (decl) == 0)
- /* Error message was already done; now avoid a crash. */
- DECL_RTL (decl) = assign_stack_local (DECL_MODE (decl), 0);
- else
- /* An initializer is going to decide the size of this array.
- Until we know the size, represent its address with a reg. */
- DECL_RTL (decl) = gen_rtx (MEM, BLKmode, gen_reg_rtx (Pmode));
- }
- else if (DECL_MODE (decl) != BLKmode
- /* If -ffloat-store, don't put explicit float vars
- into regs. */
- && !(flag_float_store
- && TREE_CODE (type) == REAL_TYPE)
- && ! TREE_VOLATILE (decl)
- && ! TREE_ADDRESSABLE (decl)
- && (TREE_REGDECL (decl) || ! obey_regdecls))
- {
- /* Automatic variable that can go in a register. */
- DECL_RTL (decl) = gen_reg_rtx (DECL_MODE (decl));
- if (TREE_CODE (type) == POINTER_TYPE)
- mark_reg_pointer (DECL_RTL (decl));
- REG_USERVAR_P (DECL_RTL (decl)) = 1;
- }
- else if (TREE_LITERAL (DECL_SIZE (decl)))
- {
- rtx oldaddr = 0;
- rtx addr;
-
- /* If we previously made RTL for this decl, it must be an array
- whose size was determined by the initializer.
- The old address was a register; set that register now
- to the proper address. */
- if (DECL_RTL (decl) != 0)
- {
- if (GET_CODE (DECL_RTL (decl)) != MEM
- || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
- abort ();
- oldaddr = XEXP (DECL_RTL (decl), 0);
- }
-
- /* Variable of fixed size that goes on the stack. */
- DECL_RTL (decl)
- = assign_stack_local (DECL_MODE (decl),
- (TREE_INT_CST_LOW (DECL_SIZE (decl))
- * DECL_SIZE_UNIT (decl)
- + BITS_PER_UNIT - 1)
- / BITS_PER_UNIT);
- if (oldaddr)
- {
- addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
- emit_move_insn (oldaddr, addr);
- }
-
- /* If this is a memory ref that contains aggregate components,
- mark it as such for cse and loop optimize. */
- MEM_IN_STRUCT_P (DECL_RTL (decl))
- = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
- || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
- || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE);
- #if 0
- /* If this is in memory because of -ffloat-store,
- set the volatile bit, to prevent optimizations from
- undoing the effects. */
- if (flag_float_store && TREE_CODE (type) == REAL_TYPE)
- MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
- #endif
- }
- else
- /* Dynamic-size object: must push space on the stack. */
- {
- rtx address, size;
-
- frame_pointer_needed = 1;
-
- /* Record the stack pointer on entry to block, if have
- not already done so. */
- if (thisblock->data.block.stack_level == 0)
- {
- do_pending_stack_adjust ();
- thisblock->data.block.stack_level
- = copy_to_reg (stack_pointer_rtx);
- stack_block_stack = thisblock;
- }
-
- /* Compute the variable's size, in bytes. */
- size = expand_expr (convert_units (DECL_SIZE (decl),
- DECL_SIZE_UNIT (decl),
- BITS_PER_UNIT),
- 0, VOIDmode, 0);
-
- /* Round it up to this machine's required stack boundary. */
- #ifdef STACK_BOUNDARY
- /* Avoid extra code if we can prove it's a multiple already. */
- if (DECL_SIZE_UNIT (decl) % STACK_BOUNDARY)
- {
- #ifdef STACK_POINTER_OFFSET
- /* Avoid extra code if we can prove that adding STACK_POINTER_OFFSET
- will not give this address invalid alignment. */
- if (DECL_ALIGN (decl) > ((STACK_POINTER_OFFSET * BITS_PER_UNIT) % STACK_BOUNDARY))
- size = plus_constant (size,
- STACK_POINTER_OFFSET % (STACK_BOUNDARY / BITS_PER_UNIT));
- #endif
- size = round_push (size);
- }
- #endif /* STACK_BOUNDARY */
-
- /* Make space on the stack, and get an rtx for the address of it. */
- #ifdef STACK_GROWS_DOWNWARD
- anti_adjust_stack (size);
- #endif
- address = copy_to_reg (stack_pointer_rtx);
- #ifdef STACK_POINTER_OFFSET
- {
- /* If the contents of the stack pointer reg are offset from the
- actual top-of-stack address, add the offset here. */
- rtx sp_offset = gen_rtx (CONST_INT, VOIDmode, STACK_POINTER_OFFSET);
- #ifdef STACK_BOUNDARY
- #ifdef STACK_GROWS_DOWNWARD
- int direction = 1;
- #else /* not STACK_GROWS_DOWNWARD */
- int direction = 0;
- #endif /* not STACK_GROWS_DOWNWARD */
- if (DECL_ALIGN (decl) > ((STACK_POINTER_OFFSET * BITS_PER_UNIT) % STACK_BOUNDARY))
- sp_offset = plus_constant (sp_offset,
- (STACK_POINTER_OFFSET
- % (STACK_BOUNDARY / BITS_PER_UNIT)
- * direction));
- #endif /* STACK_BOUNDARY */
- emit_insn (gen_add2_insn (address, sp_offset));
- }
- #endif /* STACK_POINTER_OFFSET */
- #ifndef STACK_GROWS_DOWNWARD
- anti_adjust_stack (size);
- #endif
-
- /* Some systems require a particular insn to refer to the stack
- to make the pages exist. */
- #ifdef HAVE_probe
- if (HAVE_probe)
- emit_insn (gen_probe ());
- #endif
-
- /* Reference the variable indirect through that rtx. */
- DECL_RTL (decl) = gen_rtx (MEM, DECL_MODE (decl), address);
- }
-
- if (TREE_VOLATILE (decl))
- MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
- if (TREE_READONLY (decl))
- RTX_UNCHANGING_P (DECL_RTL (decl)) = 1;
-
- /* If doing stupid register allocation, make sure life of any
- register variable starts here, at the start of its scope. */
-
- if (obey_regdecls)
- use_variable (DECL_RTL (decl));
- }
-
- /* Emit code to perform the initialization of a declaration DECL. */
-
- void
- expand_decl_init (decl)
- tree decl;
- {
- if (TREE_STATIC (decl))
- return;
-
- /* Compute and store the initial value now. */
-
- if (DECL_INITIAL (decl) == error_mark_node)
- {
- enum tree_code code = TREE_CODE (TREE_TYPE (decl));
- if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
- || code == POINTER_TYPE)
- expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
- 0, 0);
- emit_queue ();
- }
- else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
- {
- emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
- expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
- emit_queue ();
- }
- }
-
- /* CLEANUP is an expression to be executed at exit from this binding contour;
- for example, in C++, it might call the destructor for this variable.
-
- If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them
- either before or after calling `expand_decl' but before compiling
- any subsequent expressions. This is because CLEANUP may be expanded
- more than once, on different branches of execution.
- For the same reason, CLEANUP may not contain a CALL_EXPR
- except as its topmost node--else `preexpand_calls' would get confused.
-
- If CLEANUP is nonzero and DECL is zero, we record a cleanup
- that is not associated with any particular variable.
-
- Return 0 if such an expansion is invalid. Otherwise, return 1. */
- int
- expand_decl_cleanup (decl, cleanup)
- {
- struct nesting *thisblock = block_stack;
-
- /* Record the cleanup if there is one. */
-
- if (cleanup != 0)
- {
- if (thisblock == 0)
- return 0;
-
- thisblock->data.block.cleanups
- = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
- /* If this block has a cleanup, it belongs in stack_block_stack. */
- stack_block_stack = thisblock;
- }
- return 1;
- }
-
- /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
- DECL_ELTS is the list of elements that belong to DECL's type.
- In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
-
- void
- expand_anon_union_decl (decl, cleanup, decl_elts)
- tree decl, cleanup, decl_elts;
- {
- struct nesting *thisblock = block_stack;
- rtx x;
-
- expand_decl (decl, cleanup);
- x = DECL_RTL (decl);
-
- while (decl_elts)
- {
- tree decl_elt = TREE_VALUE (decl_elts);
- tree cleanup_elt = TREE_PURPOSE (decl_elts);
- enum machine_mode tmode = TYPE_MODE (TREE_TYPE (decl_elt));
-
- if (GET_CODE (x) == MEM)
- {
- /* @@ calling `change_address' means that we cannot
- be at top-level, since `memory_address' might try
- to kick this address into a register, which won't
- work. Will this work? */
- rtx new = gen_rtx (MEM, tmode, XEXP (x, 0));
- DECL_RTL (decl_elt) = new;
- MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
- RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
- MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
- }
- else
- DECL_RTL (decl_elt) = gen_rtx (SUBREG, tmode, x, 0);
-
- /* Record the cleanup if there is one. */
-
- if (cleanup != 0)
- thisblock->data.block.cleanups
- = temp_tree_cons (decl_elt, cleanup_elt,
- thisblock->data.block.cleanups);
-
- decl_elts = TREE_CHAIN (decl_elts);
- }
- }
-
- /* Expand a list of cleanups LIST.
- Elements may be expressions or may be nested lists.
-
- If DONT_DO is nonnull, then any list-element
- whose TREE_PURPOSE matches DONT_DO is omitted.
- This is sometimes used to avoid a cleanup associated with
- a value that is being returned out of the scope. */
-
- static void
- expand_cleanups (list, dont_do)
- tree list;
- tree dont_do;
- {
- tree tail;
- for (tail = list; tail; tail = TREE_CHAIN (tail))
- if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
- {
- if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
- expand_cleanups (TREE_VALUE (tail), dont_do);
- else
- expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
- }
- }
-
- /* Expand a list of cleanups for a goto fixup.
- The expansion is put into the insn chain after the insn *BEFORE_JUMP
- and *BEFORE_JUMP is set to the insn that now comes before the jump. */
-
- static void
- fixup_cleanups (list, before_jump)
- tree list;
- rtx *before_jump;
- {
- rtx beyond_jump = get_last_insn ();
- rtx new_before_jump;
-
- expand_cleanups (list, 0);
- do_pending_stack_adjust ();
-
- new_before_jump = get_last_insn ();
-
- if (beyond_jump != new_before_jump)
- /* If cleanups expand to nothing, don't reorder. */
- reorder_insns (NEXT_INSN (beyond_jump), new_before_jump, *before_jump);
-
- *before_jump = new_before_jump;
- }
-
- /* Move all cleanups from the current block_stack
- to the containing block_stack, where they are assumed to
- have been created. If anything can cause a temporary to
- be created, but not expanded for more than one level of
- block_stacks, then this code will have to change. */
-
- void
- move_cleanups_up ()
- {
- struct nesting *block = block_stack;
- struct nesting *outer = block->next;
-
- outer->data.block.cleanups
- = chainon (block->data.block.cleanups,
- outer->data.block.cleanups);
- block->data.block.cleanups = 0;
- }
-
- int
- this_contour_has_cleanups_p ()
- {
- return block_stack && block_stack->data.block.cleanups != 0;
- }
-
- /* Enter a case (Pascal) or switch (C) statement.
- Push a block onto case_stack and nesting_stack
- to accumulate the case-labels that are seen
- and to record the labels generated for the statement.
-
- EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
- Otherwise, this construct is transparent for `exit_something'.
-
- EXPR is the index-expression to be dispatched on.
- TYPE is its nominal type. We could simply convert EXPR to this type,
- but instead we take short cuts. */
-
- void
- expand_start_case (exit_flag, expr, type)
- int exit_flag;
- tree expr;
- tree type;
- {
- register struct nesting *thiscase
- = (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting));
-
- /* Make an entry on case_stack for the case we are entering. */
-
- thiscase->next = case_stack;
- thiscase->all = nesting_stack;
- thiscase->depth = ++nesting_depth;
- thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
- thiscase->data.case_stmt.case_list = 0;
- thiscase->data.case_stmt.index_expr = expr;
- thiscase->data.case_stmt.nominal_type = type;
- thiscase->data.case_stmt.default_label = 0;
- thiscase->data.case_stmt.num_ranges = 0;
- case_stack = thiscase;
- nesting_stack = thiscase;
-
- do_pending_stack_adjust ();
-
- /* Make sure case_stmt.start points to something that won't
- need any transformation before expand_end_case. */
- emit_note (0, NOTE_INSN_DELETED);
-
- thiscase->data.case_stmt.start = get_last_insn ();
- }
-
- /* Start a "dummy case statement" within which case labels are invalid
- and are not connected to any larger real case statement.
- This can be used if you don't want to let a case statement jump
- into the middle of certain kinds of constructs. */
-
- void
- expand_start_case_dummy ()
- {
- register struct nesting *thiscase
- = (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting));
-
- /* Make an entry on case_stack for the dummy. */
-
- thiscase->next = case_stack;
- thiscase->all = nesting_stack;
- thiscase->depth = ++nesting_depth;
- thiscase->exit_label = 0;
- thiscase->data.case_stmt.case_list = 0;
- thiscase->data.case_stmt.start = 0;
- thiscase->data.case_stmt.nominal_type = 0;
- thiscase->data.case_stmt.default_label = 0;
- thiscase->data.case_stmt.num_ranges = 0;
- case_stack = thiscase;
- nesting_stack = thiscase;
- }
-
- /* End a dummy case statement. */
-
- void
- expand_end_case_dummy ()
- {
- POPSTACK (case_stack);
- }
-
- /* Accumulate one case or default label inside a case or switch statement.
- VALUE is the value of the case (a null pointer, for a default label).
-
- If not currently inside a case or switch statement, return 1 and do
- nothing. The caller will print a language-specific error message.
- If VALUE is a duplicate or overlaps, return 2 and do nothing.
- If VALUE is out of range, return 3 and do nothing.
- Return 0 on success.
-
- Extended to handle range statements, should they ever
- be adopted. */
-
- int
- pushcase (value, label)
- register tree value;
- register tree label;
- {
- register struct case_node **l;
- register struct case_node *n;
- tree index_type;
- tree nominal_type;
-
- /* Fail if not inside a real case statement. */
- if (! (case_stack && case_stack->data.case_stmt.start))
- return 1;
-
- index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
- nominal_type = case_stack->data.case_stmt.nominal_type;
-
- /* If the index is erroneous, avoid more problems: pretend to succeed. */
- if (index_type == error_mark_node)
- return 0;
-
- /* Convert VALUE to the type in which the comparisons are nominally done. */
- if (value != 0)
- value = convert (nominal_type, value);
-
- /* Fail if this value is out of range for the actual type of the index
- (which may be narrower than NOMINAL_TYPE). */
- if (value != 0 && ! int_fits_type_p (value, index_type))
- return 3;
-
- /* Fail if this is a duplicate or overlaps another entry. */
- if (value == 0)
- {
- if (case_stack->data.case_stmt.default_label != 0)
- return 2;
- case_stack->data.case_stmt.default_label = label;
- }
- else
- {
- /* Find the elt in the chain before which to insert the new value,
- to keep the chain sorted in increasing order.
- But report an error if this element is a duplicate. */
- for (l = &case_stack->data.case_stmt.case_list;
- /* Keep going past elements distinctly less than VALUE. */
- *l != 0 && tree_int_cst_lt ((*l)->high, value);
- l = &(*l)->right)
- ;
- if (*l)
- {
- /* Element we will insert before must be distinctly greater;
- overlap means error. */
- if (! tree_int_cst_lt (value, (*l)->low))
- return 2;
- }
-
- /* Add this label to the chain, and succeed.
- Copy VALUE so it is on temporary rather than momentary
- obstack and will thus survive till the end of the case statement. */
- n = (struct case_node *) oballoc (sizeof (struct case_node));
- n->left = 0;
- n->right = *l;
- n->high = n->low = copy_node (value);
- n->code_label = label;
- n->test_label = 0;
- *l = n;
- }
-
- expand_label (label);
- return 0;
- }
-
- /* Like pushcase but this case applies to all values
- between VALUE1 and VALUE2 (inclusive).
- The return value is the same as that of pushcase
- but there is one additional error code:
- 4 means the specified range was empty.
-
- Note that this does not currently work, since expand_end_case
- has yet to be extended to handle RANGE_EXPRs. */
-
- int
- pushcase_range (value1, value2, label)
- register tree value1, value2;
- register tree label;
- {
- register struct case_node **l;
- register struct case_node *n;
- tree index_type;
- tree nominal_type;
-
- /* Fail if not inside a real case statement. */
- if (! (case_stack && case_stack->data.case_stmt.start))
- return 1;
-
- index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
- nominal_type = case_stack->data.case_stmt.nominal_type;
-
- /* If the index is erroneous, avoid more problems: pretend to succeed. */
- if (index_type == error_mark_node)
- return 0;
-
- /* Convert VALUEs to type in which the comparisons are nominally done. */
- if (value1 != 0)
- value1 = convert (nominal_type, value1);
- if (value2 != 0)
- value2 = convert (nominal_type, value2);
-
- /* Fail if these values are out of range. */
- if (value1 != 0 && ! int_fits_type_p (value1, index_type))
- return 3;
-
- if (value2 != 0 && ! int_fits_type_p (value2, index_type))
- return 3;
-
- /* Fail if the range is empty. */
- if (tree_int_cst_lt (value2, value1))
- return 4;
-
- /* If the bounds are equal, turn this into the one-value case. */
- if (tree_int_cst_equal (value1, value2))
- return pushcase (value1, label);
-
- /* Find the elt in the chain before which to insert the new value,
- to keep the chain sorted in increasing order.
- But report an error if this element is a duplicate. */
- for (l = &case_stack->data.case_stmt.case_list;
- /* Keep going past elements distinctly less than this range. */
- *l != 0 && tree_int_cst_lt ((*l)->high, value1);
- l = &(*l)->right)
- ;
- if (*l)
- {
- /* Element we will insert before must be distinctly greater;
- overlap means error. */
- if (! tree_int_cst_lt (value2, (*l)->low))
- return 2;
- }
-
- /* Add this label to the chain, and succeed.
- Copy VALUE1, VALUE2 so they are on temporary rather than momentary
- obstack and will thus survive till the end of the case statement. */
-
- n = (struct case_node *) oballoc (sizeof (struct case_node));
- n->left = 0;
- n->right = *l;
- n->low = copy_node (value1);
- n->high = copy_node (value2);
- n->code_label = label;
- n->test_label = 0;
- *l = n;
-
- expand_label (label);
-
- case_stack->data.case_stmt.num_ranges++;
-
- return 0;
- }
-
- /* Check that all enumeration literals are covered by the case
- expressions of a switch. Also, warn if there are any extra
- switch cases that are *not* elements of the enumerated type. */
-
- void
- check_for_full_enumeration_handling (type)
- tree type;
- {
- register struct case_node *n;
- register tree chain;
-
- /* The time complexity of this loop is currently O(N * M), with
- N being the number of enumerals in the enumerated type, and
- M being the number of case expressions in the switch. */
-
- for (chain = TYPE_VALUES (type);
- chain;
- chain = TREE_CHAIN (chain))
- {
- /* Find a match between enumeral and case expression, if possible.
- Quit looking when we've gone too far (since case expressions
- are kept sorted in ascending order). Warn about enumerals not
- handled in the switch statement case expression list. */
-
- for (n = case_stack->data.case_stmt.case_list;
- n && tree_int_cst_lt (n->high, TREE_VALUE (chain));
- n = n->right)
- ;
-
- if (!(n && tree_int_cst_equal (n->low, TREE_VALUE (chain))))
- warning ("enumerated value `%s' not handled in switch",
- IDENTIFIER_POINTER (TREE_PURPOSE (chain)));
- }
-
- /* Now we go the other way around; we warn if there are case
- expressions that don't correspond to enumerals. This can
- occur since C and C++ don't enforce type-checking of
- assignments to enumeration variables. */
-
- for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
- {
- for (chain = TYPE_VALUES (type);
- chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
- chain = TREE_CHAIN (chain))
- ;
-
- if (!chain)
- warning ("case value `%d' not in enumerated type `%s'",
- TREE_INT_CST_LOW (n->low),
- IDENTIFIER_POINTER (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
- ? TYPE_NAME (type)
- : DECL_NAME (TYPE_NAME (type))));
- }
- }
-
- /* Terminate a case (Pascal) or switch (C) statement
- in which CASE_INDEX is the expression to be tested.
- Generate the code to test it and jump to the right place. */
-
- void
- expand_end_case (orig_index)
- tree orig_index;
- {
- tree minval, maxval, range;
- rtx default_label = 0;
- register struct case_node *n;
- int count;
- rtx index;
- rtx table_label = gen_label_rtx ();
- int ncases;
- rtx *labelvec;
- register int i;
- rtx before_case;
- register struct nesting *thiscase = case_stack;
- tree index_expr = thiscase->data.case_stmt.index_expr;
- int unsignedp = TREE_UNSIGNED (TREE_TYPE (index_expr));
-
- do_pending_stack_adjust ();
-
- /* An ERROR_MARK occurs for various reasons including invalid data type. */
- if (TREE_TYPE (index_expr) != error_mark_node)
- {
- /* If switch expression was an enumerated type, check that all
- enumeration literals are covered by the cases.
- No sense trying this if there's a default case, however. */
-
- if (!thiscase->data.case_stmt.default_label
- && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
- && TREE_CODE (index_expr) != INTEGER_CST
- && warn_switch)
- check_for_full_enumeration_handling (TREE_TYPE (orig_index));
-
- /* If we don't have a default-label, create one here,
- after the body of the switch. */
- if (thiscase->data.case_stmt.default_label == 0)
- {
- thiscase->data.case_stmt.default_label
- = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
- expand_label (thiscase->data.case_stmt.default_label);
- }
- default_label = label_rtx (thiscase->data.case_stmt.default_label);
-
- before_case = get_last_insn ();
-
- /* Simplify the case-list before we count it. */
- group_case_nodes (thiscase->data.case_stmt.case_list);
-
- /* Get upper and lower bounds of case values.
- Also convert all the case values to the index expr's data type. */
-
- count = 0;
- for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
- {
- /* Check low and high label values are integers. */
- if (TREE_CODE (n->low) != INTEGER_CST)
- abort ();
- if (TREE_CODE (n->high) != INTEGER_CST)
- abort ();
-
- n->low = convert (TREE_TYPE (index_expr), n->low);
- n->high = convert (TREE_TYPE (index_expr), n->high);
-
- /* Count the elements and track the largest and smallest
- of them (treating them as signed even if they are not). */
- if (count++ == 0)
- {
- minval = n->low;
- maxval = n->high;
- }
- else
- {
- if (INT_CST_LT (n->low, minval))
- minval = n->low;
- if (INT_CST_LT (maxval, n->high))
- maxval = n->high;
- }
- /* A range counts double, since it requires two compares. */
- if (! tree_int_cst_equal (n->low, n->high))
- count++;
- }
-
- /* Compute span of values. */
- if (count != 0)
- range = combine (MINUS_EXPR, maxval, minval);
-
- if (count == 0 || TREE_CODE (TREE_TYPE (index_expr)) == ERROR_MARK)
- {
- expand_expr (index_expr, const0_rtx, VOIDmode, 0);
- emit_queue ();
- emit_jump (default_label);
- }
- /* If range of values is much bigger than number of values,
- make a sequence of conditional branches instead of a dispatch.
- If the switch-index is a constant, do it this way
- because we can optimize it. */
- else if (TREE_INT_CST_HIGH (range) != 0
- #ifdef HAVE_casesi
- || count < 4
- #else
- /* If machine does not have a case insn that compares the
- bounds, this means extra overhead for dispatch tables
- which raises the threshold for using them. */
- || count < 5
- #endif
- || (unsigned) (TREE_INT_CST_LOW (range)) > 10 * count
- || TREE_CODE (index_expr) == INTEGER_CST)
- {
- index = expand_expr (index_expr, 0, VOIDmode, 0);
-
- /* If the index is a short or char that we do not have
- an insn to handle comparisons directly, convert it to
- a full integer now, rather than letting each comparison
- generate the conversion. */
-
- if ((GET_MODE (index) == QImode || GET_MODE (index) == HImode)
- && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code
- == CODE_FOR_nothing))
- index = convert_to_mode (SImode, index, unsignedp);
-
- emit_queue ();
- do_pending_stack_adjust ();
-
- index = protect_from_queue (index, 0);
- if (GET_CODE (index) == MEM)
- index = copy_to_reg (index);
- if (GET_CODE (index) == CONST_INT
- || TREE_CODE (index_expr) == INTEGER_CST)
- {
- /* Make a tree node with the proper constant value
- if we don't already have one. */
- if (TREE_CODE (index_expr) != INTEGER_CST)
- {
- index_expr
- = build_int_2 (INTVAL (index),
- !unsignedp && INTVAL (index) >= 0 ? 0 : -1);
- index_expr = convert (TREE_TYPE (index_expr), index_expr);
- }
-
- /* For constant index expressions we need only
- issue a unconditional branch to the appropriate
- target code. The job of removing any unreachable
- code is left to the optimisation phase if the
- "-O" option is specified. */
- for (n = thiscase->data.case_stmt.case_list;
- n;
- n = n->right)
- {
- if (! tree_int_cst_lt (index_expr, n->low)
- && ! tree_int_cst_lt (n->high, index_expr))
- break;
- }
- if (n)
- emit_jump (label_rtx (n->code_label));
- else
- emit_jump (default_label);
- }
- else
- {
- /* If the index expression is not constant we generate
- a binary decision tree to select the appropriate
- target code. This is done as follows:
-
- The list of cases is rearranged into a binary tree,
- nearly optimal assuming equal probability for each case.
-
- The tree is transformed into RTL, eliminating
- redundant test conditions at the same time.
-
- If program flow could reach the end of the
- decision tree an unconditional jump to the
- default code is emitted. */
- if (optimize
- && TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE)
- estimate_case_costs (thiscase->data.case_stmt.case_list,
- default_label);
- balance_case_nodes (&thiscase->data.case_stmt.case_list, 0);
- emit_case_nodes (index, thiscase->data.case_stmt.case_list,
- default_label, unsignedp);
- emit_jump_if_reachable (default_label);
- }
- }
- else
- {
- #ifdef HAVE_casesi
- /* Convert the index to SImode. */
- if (TYPE_MODE (TREE_TYPE (index_expr)) == DImode)
- {
- index_expr = build (MINUS_EXPR, TREE_TYPE (index_expr),
- index_expr, minval);
- minval = integer_zero_node;
- }
- if (TYPE_MODE (TREE_TYPE (index_expr)) != SImode)
- index_expr = convert (type_for_size (GET_MODE_BITSIZE (SImode), 0),
- index_expr);
- index = expand_expr (index_expr, 0, VOIDmode, 0);
- emit_queue ();
- index = protect_from_queue (index, 0);
- do_pending_stack_adjust ();
-
- emit_jump_insn (gen_casesi (index, expand_expr (minval, 0, VOIDmode, 0),
- expand_expr (range, 0, VOIDmode, 0),
- table_label, default_label));
- #else
- #ifdef HAVE_tablejump
- index_expr = convert (type_for_size (GET_MODE_BITSIZE (SImode), 0),
- build (MINUS_EXPR, TREE_TYPE (index_expr),
- index_expr, minval));
- index = expand_expr (index_expr, 0, VOIDmode, 0);
- emit_queue ();
- index = protect_from_queue (index, 0);
- do_pending_stack_adjust ();
-
- do_tablejump (index,
- gen_rtx (CONST_INT, VOIDmode, TREE_INT_CST_LOW (range)),
- table_label, default_label);
- #else
- lossage;
- #endif /* not HAVE_tablejump */
- #endif /* not HAVE_casesi */
-
- /* Get table of labels to jump to, in order of case index. */
-
- ncases = TREE_INT_CST_LOW (range) + 1;
- labelvec = (rtx *) alloca (ncases * sizeof (rtx));
- bzero (labelvec, ncases * sizeof (rtx));
-
- for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
- {
- register int i
- = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (minval);
-
- while (i + TREE_INT_CST_LOW (minval)
- <= TREE_INT_CST_LOW (n->high))
- labelvec[i++]
- = gen_rtx (LABEL_REF, Pmode, label_rtx (n->code_label));
- }
-
- /* Fill in the gaps with the default. */
- for (i = 0; i < ncases; i++)
- if (labelvec[i] == 0)
- labelvec[i] = gen_rtx (LABEL_REF, Pmode, default_label);
-
- /* Output the table */
- emit_label (table_label);
-
- #ifdef CASE_VECTOR_PC_RELATIVE
- emit_jump_insn (gen_rtx (ADDR_DIFF_VEC, CASE_VECTOR_MODE,
- gen_rtx (LABEL_REF, Pmode, table_label),
- gen_rtvec_v (ncases, labelvec)));
- #else
- emit_jump_insn (gen_rtx (ADDR_VEC, CASE_VECTOR_MODE,
- gen_rtvec_v (ncases, labelvec)));
- #endif
- /* If the case insn drops through the table,
- after the table we must jump to the default-label.
- Otherwise record no drop-through after the table. */
- #ifdef CASE_DROPS_THROUGH
- emit_jump (default_label);
- #else
- emit_barrier ();
- #endif
- }
-
- reorder_insns (NEXT_INSN (before_case), get_last_insn (),
- thiscase->data.case_stmt.start);
- }
- if (thiscase->exit_label)
- emit_label (thiscase->exit_label);
-
- POPSTACK (case_stack);
- }
-
- /* See case.c for CASE-handling code. */
-
- /* Allocate fixed slots in the stack frame of the current function. */
-
- /* Return size needed for stack frame based on slots so far allocated. */
-
- int
- get_frame_size ()
- {
- #ifdef FRAME_GROWS_DOWNWARD
- return -frame_offset + STARTING_FRAME_OFFSET;
- #else
- return frame_offset - STARTING_FRAME_OFFSET;
- #endif
- }
-
- /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
- with machine mode MODE. */
-
- rtx
- assign_stack_local (mode, size)
- enum machine_mode mode;
- int size;
- {
- register rtx x, addr;
- int bigend_correction = 0;
-
- frame_pointer_needed = 1;
-
- /* Make each stack slot a multiple of the main allocation unit. */
- size = (((size + (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1)
- / (BIGGEST_ALIGNMENT / BITS_PER_UNIT))
- * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
-
- /* On a big-endian machine, if we are allocating more space than we will use,
- use the least significant bytes of those that are allocated. */
- #ifdef BYTES_BIG_ENDIAN
- if (mode != BLKmode)
- bigend_correction = size - GET_MODE_SIZE (mode);
- #endif
-
- #ifdef FRAME_GROWS_DOWNWARD
- frame_offset -= size;
- #endif
- addr = gen_rtx (PLUS, Pmode, frame_pointer_rtx,
- gen_rtx (CONST_INT, VOIDmode,
- (frame_offset + bigend_correction)));
- #ifndef FRAME_GROWS_DOWNWARD
- frame_offset += size;
- #endif
-
- if (! memory_address_p (mode, addr))
- invalid_stack_slot = 1;
-
- x = gen_rtx (MEM, mode, addr);
-
- stack_slot_list = gen_rtx (EXPR_LIST, VOIDmode, x, stack_slot_list);
-
- return x;
- }
-
- /* Retroactively move an auto variable from a register to a stack slot.
- This is done when an address-reference to the variable is seen. */
-
- void
- put_var_into_stack (decl)
- tree decl;
- {
- register rtx reg = DECL_RTL (decl);
- register rtx new;
-
- /* No need to do anything if decl has no rtx yet
- since in that case caller is setting TREE_ADDRESSABLE
- and a stack slot will be assigned when the rtl is made. */
- if (reg == 0)
- return;
- if (GET_CODE (reg) != REG)
- return;
-
- new = parm_stack_loc (reg);
- if (new == 0)
- new = assign_stack_local (GET_MODE (reg), GET_MODE_SIZE (GET_MODE (reg)));
-
- XEXP (reg, 0) = XEXP (new, 0);
- /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
- REG_USERVAR_P (reg) = 0;
- PUT_CODE (reg, MEM);
-
- /* If this is a memory ref that contains aggregate components,
- mark it as such for cse and loop optimize. */
- MEM_IN_STRUCT_P (reg)
- = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
- || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
- || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE);
-
- fixup_var_refs (reg);
- }
-
- static void
- fixup_var_refs (var)
- rtx var;
- {
- extern rtx sequence_stack;
- rtx stack = sequence_stack;
- tree pending;
-
- stack = sequence_stack;
-
- /* Must scan all insns for stack-refs that exceed the limit. */
- fixup_var_refs_insns (var, get_insns (), stack == 0);
-
- /* Scan all pending sequences too. */
- for (; stack; stack = XEXP (XEXP (stack, 1), 1))
- {
- push_to_sequence (XEXP (stack, 0));
- fixup_var_refs_insns (var, XEXP (stack, 0),
- XEXP (XEXP (stack, 1), 1) == 0);
- /* Update remembered end of sequence
- in case we added an insn at the end. */
- XEXP (XEXP (stack, 1), 0) = get_last_insn ();
- end_sequence ();
- }
-
- /* Scan all waiting RTL_EXPRs too. */
- for (pending = rtl_expr_chain; pending; pending = TREE_CHAIN (pending))
- {
- rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
- if (seq != const0_rtx && seq != 0)
- {
- push_to_sequence (seq);
- fixup_var_refs_insns (var, seq, 0);
- end_sequence ();
- }
- }
- }
-
- /* Scan the insn-chain starting with INSN for refs to VAR
- and fix them up. TOPLEVEL is nonzero if this chain is the
- main chain of insns for the current function. */
-
- static void
- fixup_var_refs_insns (var, insn, toplevel)
- rtx var;
- rtx insn;
- int toplevel;
- {
- while (insn)
- {
- rtx next = NEXT_INSN (insn);
- rtx note;
- if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
- || GET_CODE (insn) == JUMP_INSN)
- {
- /* The insn to load VAR from a home in the arglist
- is now a no-op. When we see it, just delete it. */
- if (toplevel
- && GET_CODE (PATTERN (insn)) == SET
- && SET_DEST (PATTERN (insn)) == var
- && rtx_equal_p (SET_SRC (PATTERN (insn)), var))
- {
- next = delete_insn (insn);
- if (insn == last_parm_insn)
- last_parm_insn = PREV_INSN (next);
- }
- else
- fixup_var_refs_1 (var, PATTERN (insn), insn);
- /* Also fix up any invalid exprs in the REG_NOTES of this insn.
- But don't touch other insns referred to by reg-notes;
- we will get them elsewhere. */
- for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
- if (GET_CODE (note) != INSN_LIST)
- XEXP (note, 0) = walk_fixup_memory_subreg (XEXP (note, 0), insn);
- }
- insn = next;
- }
- }
-
- static rtx
- fixup_var_refs_1 (var, x, insn)
- register rtx var;
- register rtx x;
- rtx insn;
- {
- register int i;
- RTX_CODE code = GET_CODE (x);
- register char *fmt;
- register rtx tem;
-
- switch (code)
- {
- case MEM:
- if (var == x)
- {
- x = fixup_stack_1 (x, insn);
- tem = gen_reg_rtx (GET_MODE (x));
- /* Put new insn before a CALL, before any USEs before it. */
- if (GET_CODE (insn) == CALL_INSN)
- while (PREV_INSN (insn) != 0 && GET_CODE (PREV_INSN (insn)) == INSN
- && GET_CODE (PATTERN (PREV_INSN (insn))) == USE)
- insn = PREV_INSN (insn);
- emit_insn_before (gen_move_insn (tem, x), insn);
- return tem;
- }
- break;
-
- case REG:
- case CC0:
- case PC:
- case CONST_INT:
- case CONST:
- case SYMBOL_REF:
- case LABEL_REF:
- case CONST_DOUBLE:
- return x;
-
- case SIGN_EXTRACT:
- case ZERO_EXTRACT:
- /* Note that in some cases those types of expressions are altered
- by optimize_bit_field, and do not survive to get here. */
- case SUBREG:
- tem = x;
- while (GET_CODE (tem) == SUBREG || GET_CODE (tem) == SIGN_EXTRACT
- || GET_CODE (tem) == ZERO_EXTRACT)
- tem = XEXP (tem, 0);
- if (tem == var)
- {
- x = fixup_stack_1 (x, insn);
- tem = gen_reg_rtx (GET_MODE (x));
- if (GET_CODE (x) == SUBREG)
- x = fixup_memory_subreg (x, insn);
- emit_insn_before (gen_move_insn (tem, x), insn);
- return tem;
- }
- break;
-
- case SET:
- /* First do special simplification of bit-field references. */
- if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
- || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
- optimize_bit_field (x, insn, 0);
- if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
- || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
- optimize_bit_field (x, insn, 0);
-
- {
- rtx dest = SET_DEST (x);
- rtx src = SET_SRC (x);
- rtx outerdest = dest;
- rtx outersrc = src;
-
- while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == ZERO_EXTRACT)
- dest = XEXP (dest, 0);
- while (GET_CODE (src) == SUBREG
- || GET_CODE (src) == SIGN_EXTRACT
- || GET_CODE (src) == ZERO_EXTRACT)
- src = XEXP (src, 0);
-
- /* If VAR does not appear at the top level of the SET
- just scan the lower levels of the tree. */
-
- if (src != var && dest != var)
- break;
-
- /* Clean up (SUBREG:SI (MEM:mode ...) 0)
- that may appear inside a SIGN_EXTRACT or ZERO_EXTRACT.
- This was legitimate when the MEM was a REG. */
-
- if ((GET_CODE (outerdest) == SIGN_EXTRACT
- || GET_CODE (outerdest) == ZERO_EXTRACT)
- && GET_CODE (XEXP (outerdest, 0)) == SUBREG
- && SUBREG_REG (XEXP (outerdest, 0)) == var)
- XEXP (outerdest, 0) = fixup_memory_subreg (XEXP (outerdest, 0), insn);
-
- if ((GET_CODE (outersrc) == SIGN_EXTRACT
- || GET_CODE (outersrc) == ZERO_EXTRACT)
- && GET_CODE (XEXP (outersrc, 0)) == SUBREG
- && SUBREG_REG (XEXP (outersrc, 0)) == var)
- XEXP (outersrc, 0) = fixup_memory_subreg (XEXP (outersrc, 0), insn);
-
- /* Make sure that the machine's SIGN_EXTRACT and ZERO_EXTRACT insns
- accept a memory operand. */
- #ifdef HAVE_extzv
- if (GET_CODE (outersrc) == ZERO_EXTRACT
- && ! ((*insn_operand_predicate[(int) CODE_FOR_extzv][0])
- (XEXP (outersrc, 0), VOIDmode)))
- XEXP (outersrc, 0) = src
- = fixup_var_refs_1 (var, XEXP (outersrc, 0), insn);
- #endif
- #ifdef HAVE_extv
- if (GET_CODE (outersrc) == SIGN_EXTRACT
- && ! ((*insn_operand_predicate[(int) CODE_FOR_extv][0])
- (XEXP (outersrc, 0), VOIDmode)))
- XEXP (outersrc, 0) = src
- = fixup_var_refs_1 (var, XEXP (outersrc, 0), insn);
- #endif
- #ifdef HAVE_insv
- if (GET_CODE (outerdest) == ZERO_EXTRACT
- && ! ((*insn_operand_predicate[(int) CODE_FOR_insv][0])
- (XEXP (outerdest, 0), VOIDmode)))
- {
- rtx tem = gen_reg_rtx (GET_MODE (XEXP (outerdest, 0)));
-
- emit_insn_before (gen_move_insn (tem, XEXP (outerdest, 0)), insn);
- emit_insn_after (gen_move_insn (XEXP (outerdest, 0), tem), insn);
- dest = XEXP (outerdest, 0) = tem;
- }
- #endif
-
- /* Make sure a MEM inside a SIGN_EXTRACT has QImode
- since that's what bit-field insns want. */
-
- if ((GET_CODE (outerdest) == SIGN_EXTRACT
- || GET_CODE (outerdest) == ZERO_EXTRACT)
- && GET_CODE (XEXP (outerdest, 0)) == MEM
- && GET_MODE (XEXP (outerdest, 0)) != QImode)
- {
- XEXP (outerdest, 0) = copy_rtx (XEXP (outerdest, 0));
- PUT_MODE (XEXP (outerdest, 0), QImode);
- /* Adjust the address so the bit field starts within the byte
- addressed. This helps certain optimization patterns. */
- if (GET_CODE (XEXP (outerdest, 2)) == CONST_INT
- && offsettable_memref_p (XEXP (outerdest, 0)))
- {
- int count = INTVAL (XEXP (outerdest, 2));
- XEXP (outerdest, 0)
- = adj_offsettable_operand (XEXP (outerdest, 0),
- count / GET_MODE_BITSIZE (QImode));
- XEXP (outerdest, 2)
- = gen_rtx (CONST_INT, VOIDmode,
- count % GET_MODE_BITSIZE (QImode));
- }
- }
-
- if ((GET_CODE (outersrc) == SIGN_EXTRACT
- || GET_CODE (outersrc) == ZERO_EXTRACT)
- && GET_CODE (XEXP (outersrc, 0)) == MEM
- && GET_MODE (XEXP (outersrc, 0)) != QImode)
- {
- XEXP (outersrc, 0) = copy_rtx (XEXP (outersrc, 0));
- PUT_MODE (XEXP (outersrc, 0), QImode);
- /* Adjust the address so the bit field starts within the byte
- addressed. This helps certain optimization patterns. */
- if (GET_CODE (XEXP (outersrc, 2)) == CONST_INT
- && offsettable_memref_p (XEXP (outersrc, 0)))
- {
- int count = INTVAL (XEXP (outersrc, 2));
- XEXP (outersrc, 0)
- = adj_offsettable_operand (XEXP (outersrc, 0),
- count / GET_MODE_BITSIZE (QImode));
- XEXP (outersrc, 2)
- = gen_rtx (CONST_INT, VOIDmode,
- count % GET_MODE_BITSIZE (QImode));
- }
- }
-
- /* STRICT_LOW_PART is a no-op on memory references
- and it can cause combinations to be unrecognizable,
- so eliminate it. */
-
- if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
- SET_DEST (x) = XEXP (SET_DEST (x), 0);
-
- /* An insn to copy VAR into or out of a register
- must be left alone, to avoid an infinite loop here.
- But do fix up the address of VAR's stack slot if nec,
- and fix up SUBREGs containing VAR
- (since they are now memory subregs). */
-
- if (GET_CODE (SET_SRC (x)) == REG || GET_CODE (SET_DEST (x)) == REG
- || (GET_CODE (SET_SRC (x)) == SUBREG
- && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG)
- || (GET_CODE (SET_DEST (x)) == SUBREG
- && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
- {
- if (src == var && GET_CODE (SET_SRC (x)) == SUBREG)
- SET_SRC (x) = fixup_memory_subreg (SET_SRC (x), insn);
- if (dest == var && GET_CODE (SET_DEST (x)) == SUBREG)
- SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn);
- return fixup_stack_1 (x, insn);
- }
-
- /* Otherwise, storing into VAR must be handled specially
- by storing into a temporary and copying that into VAR
- with a new insn after this one. */
-
- if (dest == var)
- {
- rtx temp;
- rtx fixeddest;
- tem = SET_DEST (x);
- /* STRICT_LOW_PART can be discarded, around a MEM. */
- if (GET_CODE (tem) == STRICT_LOW_PART)
- tem = XEXP (tem, 0);
- /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
- if (GET_CODE (tem) == SUBREG)
- tem = fixup_memory_subreg (tem, insn);
- fixeddest = fixup_stack_1 (tem, insn);
- temp = gen_reg_rtx (GET_MODE (tem));
- emit_insn_after (gen_move_insn (fixeddest, temp), insn);
- SET_DEST (x) = temp;
- }
- }
- }
-
- /* Nothing special about this RTX; fix its operands. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- XEXP (x, i) = fixup_var_refs_1 (var, XEXP (x, i), insn);
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- XVECEXP (x, i, j)
- = fixup_var_refs_1 (var, XVECEXP (x, i, j), insn);
- }
- }
- return x;
- }
-
- /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
- return an rtx (MEM:m1 newaddr) which is equivalent.
- If any insns must be emitted to compute NEWADDR, put them before INSN. */
-
- static rtx
- fixup_memory_subreg (x, insn)
- rtx x;
- rtx insn;
- {
- int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
- rtx addr = XEXP (SUBREG_REG (x), 0);
- enum machine_mode mode = GET_MODE (x);
- rtx saved, result;
-
- #ifdef BYTES_BIG_ENDIAN
- offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
- #endif
- addr = plus_constant (addr, offset);
- if (memory_address_p (mode, addr))
- return change_address (SUBREG_REG (x), mode, addr);
- saved = start_sequence ();
- result = change_address (SUBREG_REG (x), mode, addr);
- emit_insn_before (gen_sequence (), insn);
- end_sequence (saved);
- return result;
- }
-
- /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
- Replace subexpressions of X in place.
- If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
- Otherwise return X, with its contents possibly altered.
-
- If any insns must be emitted to compute NEWADDR, put them before INSN. */
-
- static rtx
- walk_fixup_memory_subreg (x, insn)
- register rtx x;
- rtx insn;
- {
- register enum rtx_code code;
- register char *fmt;
- register int i;
-
- if (x == 0)
- return 0;
-
- code = GET_CODE (x);
-
- if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
- return fixup_memory_subreg (x, insn);
-
- /* Nothing special about this RTX; fix its operands. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn);
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- XVECEXP (x, i, j)
- = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn);
- }
- }
- return x;
- }
-
- #if 0
- /* Fix up any references to stack slots that are invalid memory addresses
- because they exceed the maximum range of a displacement. */
-
- void
- fixup_stack_slots ()
- {
- register rtx insn;
-
- /* Did we generate a stack slot that is out of range
- or otherwise has an invalid address? */
- if (invalid_stack_slot)
- {
- /* Yes. Must scan all insns for stack-refs that exceed the limit. */
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
- || GET_CODE (insn) == JUMP_INSN)
- fixup_stack_1 (PATTERN (insn), insn);
- }
- }
- #endif
-
- /* For each memory ref within X, if it refers to a stack slot
- with an out of range displacement, put the address in a temp register
- (emitting new insns before INSN to load these registers)
- and alter the memory ref to use that register.
- Replace each such MEM rtx with a copy, to avoid clobberage. */
-
- static rtx
- fixup_stack_1 (x, insn)
- rtx x;
- rtx insn;
- {
- register int i;
- register RTX_CODE code = GET_CODE (x);
- register char *fmt;
-
- if (code == MEM)
- {
- register rtx ad = XEXP (x, 0);
- /* If we have address of a stack slot but it's not valid
- (displacement is too large), compute the sum in a register. */
- if (GET_CODE (ad) == PLUS
- && XEXP (ad, 0) == frame_pointer_rtx
- && GET_CODE (XEXP (ad, 1)) == CONST_INT)
- {
- rtx temp;
- if (memory_address_p (GET_MODE (x), ad))
- return x;
- temp = gen_reg_rtx (GET_MODE (ad));
- emit_insn_before (gen_move_insn (temp, ad), insn);
- return change_address (x, VOIDmode, temp);
- }
- return x;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
- }
- }
- return x;
- }
-
- /* Optimization: a bit-field instruction whose field
- happens to be a byte or halfword in memory
- can be changed to a move instruction.
-
- We call here when INSN is an insn to examine or store into a bit-field.
- BODY is the SET-rtx to be altered.
-
- EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
- (Currently this is called only from stmt.c, and EQUIV_MEM is always 0.) */
-
- static void
- optimize_bit_field (body, insn, equiv_mem)
- rtx body;
- rtx insn;
- rtx *equiv_mem;
- {
- register rtx bitfield;
- int destflag;
-
- if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
- || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
- bitfield = SET_DEST (body), destflag = 1;
- else
- bitfield = SET_SRC (body), destflag = 0;
-
- /* First check that the field being stored has constant size and position
- and is in fact a byte or halfword suitably aligned. */
-
- if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
- && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
- && (INTVAL (XEXP (bitfield, 1)) == GET_MODE_BITSIZE (QImode)
- || INTVAL (XEXP (bitfield, 1)) == GET_MODE_BITSIZE (HImode))
- && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
- {
- register rtx memref = 0;
-
- /* Now check that the containing word is memory, not a register,
- and that it is safe to change the machine mode and to
- add something to the address. */
-
- if (GET_CODE (XEXP (bitfield, 0)) == MEM)
- memref = XEXP (bitfield, 0);
- else if (GET_CODE (XEXP (bitfield, 0)) == REG
- && equiv_mem != 0)
- memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
- else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
- memref = SUBREG_REG (XEXP (bitfield, 0));
- else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
- && equiv_mem != 0
- && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
- memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
-
- if (memref
- && ! mode_dependent_address_p (XEXP (memref, 0))
- && offsettable_address_p (0, GET_MODE (bitfield), XEXP (memref, 0)))
- {
- /* Now adjust the address, first for any subreg'ing
- that we are now getting rid of,
- and then for which byte of the word is wanted. */
-
- register int offset
- = INTVAL (XEXP (bitfield, 2)) / GET_MODE_BITSIZE (QImode);
- if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
- {
- offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
- #ifdef BYTES_BIG_ENDIAN
- offset -= (MIN (UNITS_PER_WORD,
- GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
- - MIN (UNITS_PER_WORD,
- GET_MODE_SIZE (GET_MODE (memref))));
- #endif
- }
-
- memref = gen_rtx (MEM,
- (INTVAL (XEXP (bitfield, 1)) == GET_MODE_BITSIZE (QImode)
- ? QImode : HImode),
- XEXP (memref, 0));
-
- /* Store this memory reference where
- we found the bit field reference. */
-
- if (destflag)
- {
- SET_DEST (body)
- = adj_offsettable_operand (memref, offset);
- if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
- {
- rtx src = SET_SRC (body);
- while (GET_CODE (src) == SUBREG
- && SUBREG_WORD (src) == 0)
- src = SUBREG_REG (src);
- if (GET_MODE (src) != GET_MODE (memref))
- src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
- SET_SRC (body) = src;
- }
- else if (GET_MODE (SET_SRC (body)) != VOIDmode
- && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
- /* This shouldn't happen because anything that didn't have
- one of these modes should have got converted explicitly
- and then referenced through a subreg.
- This is so because the original bit-field was
- handled by agg_mode and so its tree structure had
- the same mode that memref now has. */
- abort ();
- }
- else
- {
- rtx dest = SET_DEST (body);
-
- while (GET_CODE (dest) == SUBREG
- && SUBREG_WORD (dest) == 0)
- dest = SUBREG_REG (dest);
- SET_DEST (body) = dest;
-
- memref = adj_offsettable_operand (memref, offset);
- if (GET_MODE (dest) == GET_MODE (memref))
- SET_SRC (body) = memref;
- else
- {
- /* Convert the mem ref to the destination mode. */
- rtx last = get_last_insn ();
- rtx newreg = gen_reg_rtx (GET_MODE (dest));
- convert_move (newreg, memref,
- GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
- /* Put the conversion before the insn being fixed. */
- reorder_insns (NEXT_INSN (last), get_last_insn (),
- PREV_INSN (insn));
- SET_SRC (body) = newreg;
- }
- }
-
- /* Cause the insn to be re-recognized. */
-
- INSN_CODE (insn) = -1;
- }
- }
- }
-
- /* 1 + last pseudo register number used for loading a copy
- of a parameter of this function. */
-
- static int max_parm_reg;
-
- /* Vector indexed by REGNO, containing location on stack in which
- to put the parm which is nominally in pseudo register REGNO,
- if we discover that that parm must go in the stack. */
- static rtx *parm_reg_stack_loc;
-
- int
- max_parm_reg_num ()
- {
- return max_parm_reg;
- }
-
- /* Return the first insn following those generated by `assign_parms'. */
-
- rtx
- get_first_nonparm_insn ()
- {
- if (last_parm_insn)
- return NEXT_INSN (last_parm_insn);
- return get_insns ();
- }
-
- /* Get the stack home of a REG rtx that is one of this function's parameters.
- This is called rather than assign a new stack slot as a local.
- Return 0 if there is no existing stack home suitable for such use. */
-
- static rtx
- parm_stack_loc (reg)
- rtx reg;
- {
- if (REGNO (reg) < max_parm_reg)
- return parm_reg_stack_loc[REGNO (reg)];
- return 0;
- }
-
- /* Return 1 if EXP returns an aggregate value, for which an address
- must be passed to the function or returned by the function. */
-
- int
- aggregate_value_p (exp)
- tree exp;
- {
- if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
- return 1;
- if (RETURN_IN_MEMORY (TREE_TYPE (exp)))
- return 1;
- if (flag_pcc_struct_return
- && (TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
- || TREE_CODE (TREE_TYPE (exp)) == UNION_TYPE))
- return 1;
- return 0;
- }
-
- /* Convert a mem ref into one with a valid memory address.
- Pass through anything else unchanged. */
-
- rtx
- validize_mem (ref)
- rtx ref;
- {
- if (GET_CODE (ref) != MEM)
- return ref;
- if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
- return ref;
- return change_address (ref, VOIDmode,
- memory_address (GET_MODE (ref), XEXP (ref, 0)));
- }
-
- /* Assign RTL expressions to the function's parameters.
- This may involve copying them into registers and using
- those registers as the RTL for them. */
-
- static void
- assign_parms (fndecl)
- tree fndecl;
- {
- register tree parm;
- register rtx entry_parm;
- register rtx stack_parm;
- register CUMULATIVE_ARGS args_so_far;
- enum machine_mode passed_mode, nominal_mode;
- /* Total space needed so far for args on the stack,
- given as a constant and a tree-expression. */
- struct args_size stack_args_size;
- int first_parm_offset = FIRST_PARM_OFFSET (fndecl);
- tree fntype = TREE_TYPE (fndecl);
- /* This is used for the arg pointer when referring to stack args. */
- rtx internal_arg_pointer;
-
- int nparmregs
- = list_length (DECL_ARGUMENTS (fndecl)) + FIRST_PSEUDO_REGISTER;
-
- /* Nonzero if function takes extra anonymous args.
- This means the last named arg must be on the stack
- right before the anonymous ones.
- Also nonzero if the first arg is named `__builtin_va_alist',
- which is used on some machines for old-fashioned non-ANSI varargs.h;
- this too should be stuck onto the stack as if it had arrived there. */
- int vararg
- = ((DECL_ARGUMENTS (fndecl) != 0
- && DECL_NAME (DECL_ARGUMENTS (fndecl))
- && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (DECL_ARGUMENTS (fndecl))),
- "__builtin_va_alist")))
- ||
- (TYPE_ARG_TYPES (fntype) != 0
- && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
- != void_type_node)));
- int arg_pointer_copied = 0;
-
- #if ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM
- internal_arg_pointer = arg_pointer_rtx;
- #else
- /* If the arg pointer reg is not a fixed reg,
- make a copy of it, and address parms via the copy. */
- if (fixed_regs[ARG_POINTER_REGNUM])
- internal_arg_pointer = arg_pointer_rtx;
- else
- {
- internal_arg_pointer = copy_to_reg (arg_pointer_rtx);
- arg_pointer_copied = 1;
- }
- #endif
-
- stack_args_size.constant = 0;
- stack_args_size.var = 0;
-
- /* If struct value address comes on the stack, count it in size of args. */
- if (aggregate_value_p (DECL_RESULT (fndecl))
- && GET_CODE (struct_value_incoming_rtx) == MEM)
- stack_args_size.constant += GET_MODE_SIZE (Pmode);
-
- parm_reg_stack_loc = (rtx *) oballoc (nparmregs * sizeof (rtx));
- bzero (parm_reg_stack_loc, nparmregs * sizeof (rtx));
-
- INIT_CUMULATIVE_ARGS (args_so_far, fntype);
-
- for (parm = DECL_ARGUMENTS (fndecl); parm; parm = TREE_CHAIN (parm))
- {
- int aggregate
- = (TREE_CODE (TREE_TYPE (parm)) == ARRAY_TYPE
- || TREE_CODE (TREE_TYPE (parm)) == RECORD_TYPE
- || TREE_CODE (TREE_TYPE (parm)) == UNION_TYPE);
- struct args_size stack_offset;
- rtx stack_offset_rtx;
- enum direction where_pad;
- /* Extra bytes to add in after parameter is assigned, in
- case where argument cannot be assigned an offsetted
- location. For example, BLKmode parameters cannot be
- other than on a word boundary (no matter the size)
- because `access_parm_map' does not know how to handle
- that case. */
- int extra = 0;
-
- DECL_OFFSET (parm) = -1;
-
- if (TREE_TYPE (parm) == error_mark_node
- /* This can happen after weird syntax errors
- or if an enum type is defined among the parms. */
- || TREE_CODE (parm) != PARM_DECL
- || DECL_ARG_TYPE (parm) == NULL)
- {
- DECL_RTL (parm) = gen_rtx (MEM, BLKmode, const0_rtx);
- TREE_USED (parm) = 1;
- continue;
- }
-
- /* Find mode of arg as it is passed, and mode of arg
- as it should be during execution of this function. */
- passed_mode = TYPE_MODE (DECL_ARG_TYPE (parm));
- nominal_mode = TYPE_MODE (TREE_TYPE (parm));
-
- /* Get this parm's offset as an rtx. */
- stack_offset = stack_args_size;
- stack_offset.constant += first_parm_offset;
-
- /* If this argument needs more than the usual parm alignment, do
- extrinsic padding to reach that alignment. */
-
- #ifdef MAX_PARM_BOUNDARY
- /* If MAX_PARM_BOUNDARY is not defined, it means that the usual
- alignment requirements are relaxed for parms, and that no parm
- needs more alignment than PARM_BOUNDARY, regardless of data type. */
-
- if (PARM_BOUNDARY < TYPE_ALIGN (DECL_ARG_TYPE (parm)))
- {
- int boundary = PARM_BOUNDARY;
-
- /* Determine the boundary to pad up to. */
- if (TYPE_ALIGN (DECL_ARG_TYPE (parm)) > boundary)
- boundary = TYPE_ALIGN (DECL_ARG_TYPE (parm));
- if (boundary > MAX_PARM_BOUNDARY)
- boundary = MAX_PARM_BOUNDARY;
-
- /* If the previous args don't reach such a boundary,
- advance to the next one. */
- boundary /= BITS_PER_UNIT;
- stack_offset.constant += boundary - 1;
- stack_offset.constant &= ~(boundary - 1);
- stack_args_size.constant += boundary - 1;
- stack_args_size.constant &= ~(boundary - 1);
-
- if (stack_offset.var != 0)
- abort (); /* This case not implemented yet */
- }
- #endif /* MAX_PARM_BOUNDARY */
-
- /* Find out if the parm needs intrinsic padding (up to PARM_BOUNDARY),
- and whether above or below. */
-
- where_pad
- = FUNCTION_ARG_PADDING (passed_mode,
- expand_expr (size_in_bytes (DECL_ARG_TYPE (parm)),
- 0, VOIDmode, 0));
-
- /* If arg should be padded below, adjust the stack address upward.
- This padding is considered part of the space occupied by the
- argument. It pads only up to PARM_BOUNDARY, and it does not
- depend on the previous arguments, since they are assumed to
- occupy a multiple of PARM_BOUNDARY. */
-
- if (where_pad == downward)
- {
- if (passed_mode != BLKmode)
- {
- if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
- stack_offset.constant
- += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
- / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
- - GET_MODE_SIZE (passed_mode));
- }
- else
- {
- tree sizetree = size_in_bytes (DECL_ARG_TYPE (parm));
- if (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT != PARM_BOUNDARY)
- {
- /* Round the size up to multiple of PARM_BOUNDARY bits. */
- tree s1 = convert_units (sizetree, BITS_PER_UNIT, PARM_BOUNDARY);
- tree s2 = convert_units (s1, PARM_BOUNDARY, BITS_PER_UNIT);
- /* Add it in. */
- ADD_PARM_SIZE (stack_offset, s2);
- SUB_PARM_SIZE (stack_offset, sizetree);
- extra = stack_offset.constant % UNITS_PER_WORD;
- stack_offset.constant -= extra;
- }
- }
- }
-
- stack_offset_rtx = ARGS_SIZE_RTX (stack_offset);
-
- /* Determine parm's home in the stack,
- in case it arrives in the stack or we should pretend it did. */
- stack_parm
- = gen_rtx (MEM, passed_mode,
- memory_address (passed_mode,
- gen_rtx (PLUS, Pmode,
- internal_arg_pointer,
- stack_offset_rtx)));
-
- /* If this is a memory ref that contains aggregate components,
- mark it as such for cse and loop optimize. */
- MEM_IN_STRUCT_P (stack_parm) = aggregate;
-
- /* Let machine desc say which reg (if any) the parm arrives in.
- 0 means it arrives on the stack. */
- entry_parm = 0;
- /* Variable-size args, and args following such, are never in regs. */
- if (TREE_CODE (TYPE_SIZE (TREE_TYPE (parm))) == INTEGER_CST
- || stack_offset.var != 0)
- {
- /* Set LAST_NAMED if this is last named arg before some
- anonymous args. We treat it as if it were anonymous too. */
- int last_named = (TREE_CHAIN (parm) == 0 && vararg);
- #ifdef FUNCTION_INCOMING_ARG
- entry_parm
- = FUNCTION_INCOMING_ARG (args_so_far, passed_mode,
- DECL_ARG_TYPE (parm), ! last_named);
- #else
- entry_parm
- = FUNCTION_ARG (args_so_far, passed_mode, DECL_ARG_TYPE (parm),
- ! last_named);
- #endif
- }
-
- /* If this parm was passed part in regs and part in memory,
- pretend it arrived entirely in memory
- by pushing the register-part onto the stack.
-
- In the special case of a DImode or DFmode that is split,
- we could put it together in a pseudoreg directly,
- but for now that's not worth bothering with. */
-
- if (entry_parm)
- {
- int nregs = 0;
- int i;
- #ifdef FUNCTION_ARG_PARTIAL_NREGS
- nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, passed_mode,
- DECL_ARG_TYPE (parm), 1);
- #endif
-
- #if 0 /* Replaced by new calling convention
- which actually passes these args on the stack. */
- /* If this is the last named arg and anonymous args follow,
- likewise pretend this arg arrived on the stack
- so varargs can find the anonymous args following it. */
- if (TREE_CHAIN (parm) == 0 && vararg)
- {
- if (GET_MODE (entry_parm) == BLKmode)
- nregs = GET_MODE_SIZE (GET_MODE (entry_parm)) / UNITS_PER_WORD;
- else
- nregs = (int_size_in_bytes (DECL_ARG_TYPE (parm))
- / UNITS_PER_WORD);
- }
- #endif /* 0 */
-
- if (nregs > 0)
- {
- current_function_pretend_args_size
- = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
- / (PARM_BOUNDARY / BITS_PER_UNIT)
- * (PARM_BOUNDARY / BITS_PER_UNIT));
-
- i = nregs;
- while (--i >= 0)
- emit_move_insn (gen_rtx (MEM, SImode,
- plus_constant (XEXP (stack_parm, 0),
- i * GET_MODE_SIZE (SImode))),
- gen_rtx (REG, SImode, REGNO (entry_parm) + i));
- entry_parm = stack_parm;
- }
- }
-
- /* If we didn't decide this parm came in a register,
- by default it came on the stack. */
- if (entry_parm == 0)
- entry_parm = stack_parm;
-
- /* For a stack parm, record in DECL_OFFSET the arglist offset
- of the parm at the time it is passed (before conversion). */
- if (entry_parm == stack_parm)
- DECL_OFFSET (parm) = stack_offset.constant * BITS_PER_UNIT;
-
- /* If there is actually space on the stack for this parm,
- count it in stack_args_size; otherwise set stack_parm to 0
- to indicate there is no preallocated stack slot for the parm. */
-
- if (entry_parm == stack_parm
- #ifdef REG_PARM_STACK_SPACE
- /* On some machines, even if a parm value arrives in a register
- there is still an (uninitialized) stack slot allocated for it. */
- || 1
- #endif
- )
- {
- tree sizetree = size_in_bytes (DECL_ARG_TYPE (parm));
- if (where_pad != none
- && TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT != PARM_BOUNDARY)
- {
- /* Round the size up to multiple of PARM_BOUNDARY bits. */
- tree s1 = convert_units (sizetree, BITS_PER_UNIT, PARM_BOUNDARY);
- sizetree = convert_units (s1, PARM_BOUNDARY, BITS_PER_UNIT);
- }
- /* Add it in. */
- ADD_PARM_SIZE (stack_args_size, sizetree);
- }
- else
- /* No stack slot was pushed for this parm. */
- stack_parm = 0;
-
- /* Now adjust STACK_PARM to the mode and precise location
- where this parameter should live during execution,
- if we discover that it must live in the stack during execution.
- To make debuggers happier on big-endian machines, we store
- the value in the last bytes of the space available. */
-
- if (nominal_mode != BLKmode && nominal_mode != passed_mode
- && stack_parm != 0)
- {
- #ifdef BYTES_BIG_ENDIAN
- if (GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
- {
- stack_offset.constant
- += GET_MODE_SIZE (passed_mode)
- - GET_MODE_SIZE (nominal_mode);
- stack_offset_rtx = ARGS_SIZE_RTX (stack_offset);
- }
- #endif
-
- stack_parm
- = gen_rtx (MEM, nominal_mode,
- memory_address (nominal_mode,
- gen_rtx (PLUS, Pmode,
- arg_pointer_rtx,
- stack_offset_rtx)));
-
- /* If this is a memory ref that contains aggregate components,
- mark it as such for cse and loop optimize. */
- MEM_IN_STRUCT_P (stack_parm) = aggregate;
- }
-
- /* If there is rounding to do for a BLKmode parameter,
- add it in here, since STACK_OFFSET is not used for the
- rest of this iteration. */
- stack_offset.constant += extra;
-
- /* ENTRY_PARM is an RTX for the parameter as it arrives,
- in the mode in which it arrives.
- STACK_PARM is an RTX for a stack slot where the parameter can live
- during the function (in case we want to put it there).
- STACK_PARM is 0 if no stack slot was pushed for it.
-
- Now output code if necessary to convert ENTRY_PARM to
- the type in which this function declares it,
- and store that result in an appropriate place,
- which may be a pseudo reg, may be STACK_PARM,
- or may be a local stack slot if STACK_PARM is 0.
-
- Set DECL_RTL to that place. */
-
- if (nominal_mode == BLKmode)
- {
- /* If a BLKmode arrives in registers, copy it to a stack slot. */
- if (GET_CODE (entry_parm) == REG)
- {
- if (stack_parm == 0)
- stack_parm
- = assign_stack_local (GET_MODE (entry_parm),
- int_size_in_bytes (TREE_TYPE (parm)));
-
- move_block_from_reg (REGNO (entry_parm), stack_parm,
- ((int_size_in_bytes (TREE_TYPE (parm))
- + UNITS_PER_WORD - 1)
- / UNITS_PER_WORD));
- }
- else if (vararg)
- {
- /* If this function uses varargs, and `__builtin_saveregs'
- can clobber this stack location, then protect it. */
- rtx pseudo_parm;
- #ifdef FUNCTION_INCOMING_ARG
- pseudo_parm
- = FUNCTION_INCOMING_ARG (args_so_far, SImode,
- integer_type_node, 1);
- #else
- pseudo_parm
- = FUNCTION_ARG (args_so_far, SImode,
- integer_type_node, 1);
- #endif
- if (pseudo_parm && GET_CODE (pseudo_parm) == REG)
- {
- push_to_sequence (save_from_saveregs);
- move_block_to_reg (REGNO (pseudo_parm), stack_parm,
- int_size_in_bytes (TREE_TYPE (parm))
- / UNITS_PER_WORD);
- save_from_saveregs = get_insns ();
- end_sequence (0);
- }
- }
- DECL_RTL (parm) = stack_parm;
- }
- else if (! ((obey_regdecls && ! TREE_REGDECL (parm)
- && ! TREE_INLINE (fndecl))
- /* layout_decl may set this. */
- || TREE_ADDRESSABLE (parm)
- || TREE_VOLATILE (parm)
- /* If -ffloat-store specified, don't put explicit
- float variables into registers. */
- || (flag_float_store
- && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
- {
- /* Store the parm in a pseudoregister during the function. */
- register rtx parmreg = gen_reg_rtx (nominal_mode);
-
- REG_USERVAR_P (parmreg) = 1;
- DECL_RTL (parm) = parmreg;
-
- /* Copy the value into the register. */
- if (GET_MODE (parmreg) != GET_MODE (entry_parm))
- convert_move (parmreg, validize_mem (entry_parm), 0);
- else
- emit_move_insn (parmreg, validize_mem (entry_parm));
-
- /* In any case, record the parm's desired stack location
- in case we later discover it must live in the stack. */
- if (REGNO (parmreg) >= nparmregs)
- {
- rtx *new;
- nparmregs = REGNO (parmreg) + 5;
- new = (rtx *) oballoc (nparmregs * sizeof (rtx));
- bcopy (parm_reg_stack_loc, new, nparmregs * sizeof (rtx));
- parm_reg_stack_loc = new;
- }
- parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
-
- /* Mark the register as eliminable if we did no conversion
- and it was copied from memory at a fixed offset,
- and the arg pointer was not copied to a pseudo-reg.
- If the arg pointer is a pseudo reg, such memory-equivalences
- as we make here would screw up life analysis for it. */
- if (nominal_mode == passed_mode
- && GET_CODE (entry_parm) == MEM
- && stack_offset.var == 0
- && ! arg_pointer_copied)
- REG_NOTES (get_last_insn ())
- = gen_rtx (EXPR_LIST, REG_EQUIV,
- entry_parm, REG_NOTES (get_last_insn ()));
-
- /* For pointer data type, suggest pointer register. */
- if (TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE)
- mark_reg_pointer (parmreg);
- }
- else
- {
- /* Value must be stored in the stack slot STACK_PARM
- during function execution. */
-
- if (passed_mode != nominal_mode)
- /* Conversion is required. */
- entry_parm = convert_to_mode (nominal_mode, entry_parm, 0);
-
- if (entry_parm != stack_parm)
- {
- if (stack_parm == 0)
- stack_parm = assign_stack_local (GET_MODE (entry_parm),
- GET_MODE_SIZE (GET_MODE (entry_parm)));
- emit_move_insn (validize_mem (stack_parm),
- validize_mem (entry_parm));
- }
-
- DECL_RTL (parm) = stack_parm;
- frame_pointer_needed = 1;
- }
-
- if (TREE_VOLATILE (parm))
- MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
- if (TREE_READONLY (parm))
- RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
-
- /* Update info on where next arg arrives in registers. */
-
- FUNCTION_ARG_ADVANCE (args_so_far, passed_mode, DECL_ARG_TYPE (parm), 1);
- }
-
- max_parm_reg = max_reg_num ();
- last_parm_insn = get_last_insn ();
-
- current_function_args_size = stack_args_size.constant;
- }
-
- /* Allocation of space for returned structure values.
- During the rtl generation pass, `get_structure_value_addr'
- is called from time to time to request the address of a block in our
- stack frame in which called functions will store the structures
- they are returning. The same space is used for all of these blocks.
-
- We allocate these blocks like stack locals. We keep reusing
- the same block until a bigger one is needed. */
-
- /* Length in bytes of largest structure value returned by
- any function called so far in this function. */
- static int max_structure_value_size;
-
- /* An rtx for the addr we are currently using for structure values.
- This is typically (PLUS (REG:SI stackptr) (CONST_INT...)). */
- static rtx structure_value;
-
- rtx
- get_structure_value_addr (sizex)
- rtx sizex;
- {
- register int size;
- if (GET_CODE (sizex) != CONST_INT)
- abort ();
- size = INTVAL (sizex);
-
- /* Round up to a multiple of the main allocation unit. */
- size = (((size + (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1)
- / (BIGGEST_ALIGNMENT / BITS_PER_UNIT))
- * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
-
- /* If this size is bigger than space we know to use,
- get a bigger piece of space. */
- if (size > max_structure_value_size)
- {
- max_structure_value_size = size;
- structure_value = assign_stack_local (BLKmode, size);
- if (GET_CODE (structure_value) == MEM)
- structure_value = XEXP (structure_value, 0);
- }
-
- return structure_value;
- }
-
- /* Walk the tree of LET_STMTs describing the binding levels within a function
- and warn about uninitialized variables.
- This is done after calling flow_analysis and before global_alloc
- clobbers the pseudo-regs to hard regs. */
-
- void
- uninitialized_vars_warning (block)
- tree block;
- {
- register tree decl, sub;
- for (decl = STMT_VARS (block); decl; decl = TREE_CHAIN (decl))
- {
- if (TREE_CODE (decl) == VAR_DECL
- /* These warnings are unreliable for and aggregates
- because assigning the fields one by one can fail to convince
- flow.c that the entire aggregate was initialized.
- Unions are troublesome because members may be shorter. */
- && TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
- && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE
- && TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE
- && DECL_RTL (decl) != 0
- && GET_CODE (DECL_RTL (decl)) == REG
- && regno_uninitialized (REGNO (DECL_RTL (decl))))
- warning_with_decl (decl,
- "`%s' may be used uninitialized in this function");
- if (TREE_CODE (decl) == VAR_DECL
- && DECL_RTL (decl) != 0
- && GET_CODE (DECL_RTL (decl)) == REG
- && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
- warning_with_decl (decl,
- "variable `%s' may be clobbered by `longjmp'");
- }
- for (sub = STMT_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
- uninitialized_vars_warning (sub);
- }
-
- /* If this function call setjmp, put all vars into the stack
- unless they were declared `register'. */
-
- void
- setjmp_protect (block)
- tree block;
- {
- register tree decl, sub;
- for (decl = STMT_VARS (block); decl; decl = TREE_CHAIN (decl))
- if ((TREE_CODE (decl) == VAR_DECL
- || TREE_CODE (decl) == PARM_DECL)
- && DECL_RTL (decl) != 0
- && GET_CODE (DECL_RTL (decl)) == REG
- && ! TREE_REGDECL (decl))
- put_var_into_stack (decl);
- for (sub = STMT_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
- setjmp_protect (sub);
- }
-
- /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
- and initialize static variables for generating RTL for the statements
- of the function. */
-
- void
- init_function_start (subr)
- tree subr;
- {
- this_function = subr;
- cse_not_expected = ! optimize;
-
- /* We have not yet found a reason why a frame pointer cannot
- be omitted for this function in particular, but maybe we know
- a priori that it is required.
- `flag_omit_frame_pointer' has its main effect here. */
- frame_pointer_needed = FRAME_POINTER_REQUIRED || ! flag_omit_frame_pointer;
-
- /* Caller save not needed yet. */
- caller_save_needed = 0;
-
- /* No gotos have been expanded yet. */
- goto_fixup_chain = 0;
-
- /* No stack slots have been made yet. */
- stack_slot_list = 0;
-
- /* No invalid stack slots have been made yet. */
- invalid_stack_slot = 0;
-
- /* No parm regs have been allocated.
- (This is important for output_inline_function.) */
- max_parm_reg = FIRST_PSEUDO_REGISTER;
-
- /* Initialize the RTL mechanism. */
- init_emit (write_symbols);
-
- /* Initialize the queue of pending postincrement and postdecrements,
- and some other info in expr.c. */
- init_expr ();
-
- init_const_rtx_hash_table ();
-
- /* Decide whether function should try to pop its args on return. */
-
- current_function_pops_args = RETURN_POPS_ARGS (TREE_TYPE (subr));
-
- current_function_name = (char *)lang_printable_name (subr);
-
- /* Nonzero if this is a nested function that uses a static chain. */
-
- current_function_needs_context
- = (DECL_CONTEXT (current_function_decl) != 0
- && TREE_CODE (DECL_CONTEXT (current_function_decl)) == LET_STMT);
-
- /* Set if a call to setjmp is seen. */
-
- current_function_calls_setjmp = 0;
- current_function_calls_alloca = 0;
-
- current_function_returns_pcc_struct = 0;
- current_function_returns_struct = 0;
-
- /* No space assigned yet for structure values. */
- max_structure_value_size = 0;
- structure_value = 0;
-
- /* We are not currently within any block, conditional, loop or case.
- @@ No longer true. We are within the block for the parms. */
- block_stack = 0;
- loop_stack = 0;
- case_stack = 0;
- cond_stack = 0;
- nesting_stack = 0;
- nesting_depth = 0;
-
- /* We have not yet needed to make a label to jump to for tail-recursion. */
- tail_recursion_label = 0;
-
- /* No stack slots allocated yet. */
- frame_offset = STARTING_FRAME_OFFSET;
-
- /* No SAVE_EXPRs in this function yet. */
- save_expr_regs = 0;
-
- /* No parameters to protect from `__builtin_saveregs' yet. */
- save_from_saveregs = 0;
-
- /* No RTL_EXPRs in this function yet. */
- rtl_expr_chain = 0;
-
- /* Within function body, compute a type's size as soon it is laid out. */
- immediate_size_expand++;
-
- init_pending_stack_adjust ();
- inhibit_defer_pop = 0;
- current_function_pretend_args_size = 0;
-
- /* Prevent ever trying to delete the first instruction of a function.
- Also tell final how to output a linenum before the function prologue. */
- emit_line_note (DECL_SOURCE_FILE (subr), DECL_SOURCE_LINE (subr));
- /* Make sure first insn is a note even if we don't want linenums.
- This makes sure the first insn will never be deleted.
- Also, final expects a note to appear there. */
- emit_note (0, NOTE_INSN_DELETED);
- /* Indicate the beginning of the function body,
- as opposed to parm setup. */
- emit_note (0, NOTE_INSN_FUNCTION_BEG);
-
- /* Set flags used by final.c. */
- if (aggregate_value_p (DECL_RESULT (subr)))
- {
- #ifdef PCC_STATIC_STRUCT_RETURN
- if (flag_pcc_struct_return)
- current_function_returns_pcc_struct = 1;
- else
- #endif
- current_function_returns_struct = 1;
- }
- }
-
- /* Start the RTL for a new function, and set variables used for
- emitting RTL.
- SUBR is the FUNCTION_DECL node.
- PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
- the function's parameters, which must be run at any return statement. */
-
- void
- expand_function_start (subr, parms_have_cleanups)
- tree subr;
- int parms_have_cleanups;
- {
- register int i;
- tree tem;
-
- /* Make sure volatile mem refs aren't considered
- valid operands of arithmetic insns. */
- init_recog ();
-
- /* If the parameters of this function need cleaning up, get a label
- for the beginning of the code which executes those cleanups. This must
- be done before doing anything with return_label. */
- if (parms_have_cleanups)
- cleanup_label = gen_label_rtx ();
- else
- cleanup_label = 0;
-
- /* Make the label for return statements to jump to, if this machine
- does not have a one-instruction return and uses an epilogue,
- or if it returns a structure, or if it has parm cleanups. */
- #ifdef HAVE_return
- if (cleanup_label == 0 && HAVE_return
- && ! current_function_returns_pcc_struct
- && ! (current_function_returns_struct && ! optimize))
- return_label = 0;
- else
- return_label = gen_label_rtx ();
- #else
- return_label = gen_label_rtx ();
- #endif
-
- /* Initialize rtx used to return the value. */
- /* Do this before assign_parms so that we copy the struct value address
- before any library calls that assign parms might generate. */
-
- /* Decide whether to return the value in memory or in a register. */
- if (aggregate_value_p (DECL_RESULT (subr)))
- {
- /* Returning something that won't go in a register. */
- register rtx value_address;
-
- #ifdef PCC_STATIC_STRUCT_RETURN
- if (flag_pcc_struct_return)
- {
- int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
- value_address = assemble_static_space (size);
- current_function_returns_pcc_struct = 1;
- }
- else
- #endif
- {
- /* Expect to be passed the address of a place to store the value. */
- value_address = gen_reg_rtx (Pmode);
- emit_move_insn (value_address, struct_value_incoming_rtx);
- current_function_returns_struct = 1;
- }
- DECL_RTL (DECL_RESULT (subr))
- = gen_rtx (MEM, DECL_MODE (DECL_RESULT (subr)),
- value_address);
- }
- else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
- /* If return mode is void, this decl rtl should not be used. */
- DECL_RTL (DECL_RESULT (subr)) = 0;
- else if (parms_have_cleanups)
- {
- /* If function will end with cleanup code for parms,
- compute the return values into a pseudo reg,
- which we will copy into the true return register
- after the cleanups are done. */
- DECL_RTL (DECL_RESULT (subr))
- = gen_reg_rtx (DECL_MODE (DECL_RESULT (subr)));
- TREE_REGDECL (DECL_RESULT (subr)) = 1;
- }
- else
- /* Scalar, returned in a register. */
- {
- #ifdef FUNCTION_OUTGOING_VALUE
- DECL_RTL (DECL_RESULT (subr))
- = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
- #else
- DECL_RTL (DECL_RESULT (subr))
- = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
- #endif
-
- current_function_returns_pointer
- = (TREE_CODE (DECL_RESULT_TYPE (subr)) == POINTER_TYPE);
-
- /* Mark this reg as the function's return value. */
- if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
- {
- REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
- TREE_REGDECL (DECL_RESULT (subr)) = 1;
- }
- }
-
- /* Initialize rtx for parameters and local variables.
- In some cases this requires emitting insns. */
-
- assign_parms (subr);
-
- /* If doing stupid allocation, mark parms as born here. */
-
- if (GET_CODE (get_last_insn ()) != NOTE)
- emit_note (0, NOTE_INSN_DELETED);
- parm_birth_insn = get_last_insn ();
-
- if (obey_regdecls)
- {
- for (i = FIRST_PSEUDO_REGISTER; i < max_parm_reg; i++)
- use_variable (regno_reg_rtx[i]);
- }
-
- /* After the parm initializations is where the tail-recursion label
- should go, if we end up needing one. */
- tail_recursion_reentry = get_last_insn ();
-
- /* Evaluate now the sizes of any types declared among the arguments. */
- for (tem = get_pending_sizes (); tem; tem = TREE_CHAIN (tem))
- expand_expr (TREE_VALUE (tem), 0, VOIDmode, 0);
-
- /* Make sure there is a line number after the function entry setup code.
- There normally is one anyway, from the following statement,
- but there could fail to be one if there is no newline here. */
- force_next_line_note ();
- }
-
- /* Generate RTL for the end of the current function.
- FILENAME and LINE are the current position in the source file. */
-
- /* ??? Nobody seems to emit the cleanup_label and the cleanups themselves.
-
- !!! Not true. finish_function does this is cplus-decl.c. */
-
- void
- expand_function_end (filename, line)
- char *filename;
- int line;
- {
- register int i;
- tree decl;
- extern rtx sequence_stack;
-
- #if 0 /* I think unused parms are legitimate enough. */
- /* Warn about unused parms. */
- if (warn_unused)
- for (decl = DECL_ARGUMENTS (current_function_decl);
- decl; decl = TREE_CHAIN (decl))
- if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL)
- warning_with_decl (decl, "unused parameter `%s'");
- #endif
-
- /* End any sequences that failed to be closed due to syntax errors. */
- while (sequence_stack)
- end_sequence (0);
-
- /* Outside function body, can't compute type's actual size
- until next function's body starts. */
- immediate_size_expand--;
-
- /* If doing stupid register allocation,
- mark register parms as dying here. */
-
- if (obey_regdecls)
- {
- rtx tem;
- for (i = FIRST_PSEUDO_REGISTER; i < max_parm_reg; i++)
- use_variable (regno_reg_rtx[i]);
-
- /* Likewise for the regs of all the SAVE_EXPRs in the function. */
-
- for (tem = save_expr_regs; tem; tem = XEXP (tem, 1))
- {
- use_variable (XEXP (tem, 0));
- use_variable_after (XEXP (tem, 0), parm_birth_insn);
- }
- }
-
- clear_pending_stack_adjust ();
- do_pending_stack_adjust ();
-
- /* Mark the end of the function body.
- If control reaches this insn, the function can drop through
- without returning a value. */
- emit_note (0, NOTE_INSN_FUNCTION_END);
-
- /* Output a linenumber for the end of the function.
- SDB depends on this. */
- emit_line_note_force (filename, line);
-
- /* Output the label for the actual return from the function,
- if one is expected. This happens either because a function epilogue
- is used instead of a return instruction, or because a return was done
- with a goto in order to run local cleanups, or because of pcc-style
- structure returning. */
-
- if (return_label)
- emit_label (return_label);
-
- /* If we had calls to alloca, and this machine needs
- an accurate stack pointer to exit the function,
- insert some code to save and restore the stack pointer. */
- #ifdef EXIT_IGNORE_STACK
- if (! EXIT_IGNORE_STACK)
- #endif
- if (current_function_calls_alloca)
- {
- rtx tem = gen_reg_rtx (Pmode);
- emit_insn_after (gen_rtx (SET, VOIDmode, tem, stack_pointer_rtx),
- parm_birth_insn);
- emit_insn (gen_rtx (SET, VOIDmode, stack_pointer_rtx, tem));
- }
-
- /* If scalar return value was computed in a pseudo-reg,
- copy that to the hard return register. */
- if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
- && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
- && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
- >= FIRST_PSEUDO_REGISTER))
- {
- rtx real_decl_result;
-
- #ifdef FUNCTION_OUTGOING_VALUE
- real_decl_result
- = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
- current_function_decl);
- #else
- real_decl_result
- = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
- current_function_decl);
- #endif
- REG_FUNCTION_VALUE_P (real_decl_result) = 1;
- emit_move_insn (real_decl_result,
- DECL_RTL (DECL_RESULT (current_function_decl)));
- emit_insn (gen_rtx (USE, VOIDmode, real_decl_result));
- }
-
- /* If returning a structure, arrange to return the address of the value
- in a place where debuggers expect to find it. */
- /* If returning a structure PCC style,
- the caller also depends on this value.
- And current_function_returns_pcc_struct is not necessarily set. */
- if (current_function_returns_struct
- || current_function_returns_pcc_struct)
- {
- rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
- tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
- #ifdef FUNCTION_OUTGOING_VALUE
- rtx outgoing
- = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
- current_function_decl);
- #else
- rtx outgoing
- = hard_function_value (build_pointer_type (type),
- current_function_decl);
- #endif
-
- #if 1
- /* If this works, leave it in. */
- /* This is not really the function value,
- and it confuses integrate.c around line 1211. */
- REG_FUNCTION_VALUE_P (outgoing) = 1;
- #endif
-
- emit_move_insn (outgoing, value_address);
- use_variable (outgoing);
- }
-
- /* Output a return insn if we are using one.
- Otherwise, let the rtl chain end here, to drop through
- into the epilogue. */
-
- #ifdef HAVE_return
- if (HAVE_return)
- emit_jump_insn (gen_return ());
- #endif
-
- /* Fix up any gotos that jumped out to the outermost
- binding level of the function.
- Must follow emitting RETURN_LABEL. */
-
- /* If you have any cleanups to do at this point,
- and they need to create temporary variables,
- then you will lose. */
- fixup_gotos (0, 0, 0, get_insns (), 0);
- }
-
- init_stmt ()
- {
- obstack_init (&stmt_obstack);
- empty_cleanup_list = build_tree_list (NULL_TREE, NULL_TREE);
- }
-